机器翻译

Grace ·
更新时间:2024-11-11
· 737 次阅读

机器翻译和数据集

机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

import os os.listdir('/home/kesci/input/') import sys sys.path.append('/home/kesci/input/d2l9528/') import collections import d2l import zipfile from d2l.data.base import Vocab import time import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import data from torch import optim 数据预处理

将数据集清洗、转化为神经网络的输入minbatch

with open('/home/kesci/input/fraeng6506/fra.txt', 'r') as f: raw_text = f.read() print(raw_text[0:1000]) def preprocess_raw(text): text = text.replace('\u202f', ' ').replace('\xa0', ' ') out = '' for i, char in enumerate(text.lower()): if char in (',', '!', '.') and i > 0 and text[i-1] != ' ': out += ' ' out += char return out text = preprocess_raw(raw_text) print(text[0:1000]) 字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字符,代表不间断空白符nbsp(non-breaking space),超出gbk编码范围,是需要去除的特殊字符。再数据预处理的过程中,我们首先需要对数据进行清洗。 分词

字符串—单词组成的列表

num_examples = 50000 source, target = [], [] for i, line in enumerate(text.split('\n')): if i > num_examples: break parts = line.split('\t') if len(parts) >= 2: source.append(parts[0].split(' ')) target.append(parts[1].split(' ')) source[0:3], target[0:3] d2l.set_figsize() d2l.plt.hist([[len(l) for l in source], [len(l) for l in target]],label=['source', 'target']) d2l.plt.legend(loc='upper right'); 建立词典

单词组成的列表—单词id组成的列表

def build_vocab(tokens): tokens = [token for line in tokens for token in line] return d2l.data.base.Vocab(tokens, min_freq=3, use_special_tokens=True) src_vocab = build_vocab(source) len(src_vocab) 载入数据集 def pad(line, max_len, padding_token): if len(line) > max_len: return line[:max_len] return line + [padding_token] * (max_len - len(line)) pad(src_vocab[source[0]], 10, src_vocab.pad) def build_array(lines, vocab, max_len, is_source): lines = [vocab[line] for line in lines] if not is_source: lines = [[vocab.bos] + line + [vocab.eos] for line in lines] array = torch.tensor([pad(line, max_len, vocab.pad) for line in lines]) valid_len = (array != vocab.pad).sum(1) #第一个维度 return array, valid_len def load_data_nmt(batch_size, max_len): # This function is saved in d2l. src_vocab, tgt_vocab = build_vocab(source), build_vocab(target) src_array, src_valid_len = build_array(source, src_vocab, max_len, True) tgt_array, tgt_valid_len = build_array(target, tgt_vocab, max_len, False) train_data = data.TensorDataset(src_array, src_valid_len, tgt_array, tgt_valid_len) train_iter = data.DataLoader(train_data, batch_size, shuffle=True) return src_vocab, tgt_vocab, train_iter src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size=2, max_len=8) for X, X_valid_len, Y, Y_valid_len, in train_iter: print('X =', X.type(torch.int32), '\nValid lengths for X =', X_valid_len, '\nY =', Y.type(torch.int32), '\nValid lengths for Y =', Y_valid_len) break

在这里插入图片描述

class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self).__init__(**kwargs) def forward(self, X, *args): raise NotImplementedError class Decoder(nn.Module): def __init__(self, **kwargs): super(Decoder, self).__init__(**kwargs) def init_state(self, enc_outputs, *args): raise NotImplementedError def forward(self, X, state): raise NotImplementedError class EncoderDecoder(nn.Module): def __init__(self, encoder, decoder, **kwargs): super(EncoderDecoder, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder def forward(self, enc_X, dec_X, *args): enc_outputs = self.encoder(enc_X, *args) dec_state = self.decoder.init_state(enc_outputs, *args) return self.decoder(dec_X, dec_state)

可以应用在对话系统、生成式任务中。
在这里插入图片描述
在这里插入图片描述

class Seq2SeqEncoder(d2l.Encoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqEncoder, self).__init__(**kwargs) self.num_hiddens=num_hiddens self.num_layers=num_layers self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout) def begin_state(self, batch_size, device): return [torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device), torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device)] def forward(self, X, *args): X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size) X = X.transpose(0, 1) # RNN needs first axes to be time # state = self.begin_state(X.shape[1], device=X.device) out, state = self.rnn(X) # The shape of out is (seq_len, batch_size, num_hiddens). # state contains the hidden state and the memory cell # of the last time step, the shape is (num_layers, batch_size, num_hiddens) return out, state encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2) X = torch.zeros((4, 7),dtype=torch.long) output, state = encoder(X) output.shape, len(state), state[0].shape, state[1].shape Decoder class Seq2SeqDecoder(d2l.Decoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqDecoder, self).__init__(**kwargs) self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout) self.dense = nn.Linear(num_hiddens,vocab_size) def init_state(self, enc_outputs, *args): return enc_outputs[1] def forward(self, X, state): X = self.embedding(X).transpose(0, 1) out, state = self.rnn(X, state) # Make the batch to be the first dimension to simplify loss computation. out = self.dense(out).transpose(0, 1) return out, state decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2) state = decoder.init_state(encoder(X)) out, state = decoder(X, state) out.shape, len(state), state[0].shape, state[1].shape 损失函数 def SequenceMask(X, X_len,value=0): maxlen = X.size(1) mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None] X[~mask]=value return X X = torch.tensor([[1,2,3], [4,5,6]]) SequenceMask(X,torch.tensor([1,2])) X = torch.ones((2,3, 4)) SequenceMask(X, torch.tensor([1,2]),value=-1) class MaskedSoftmaxCELoss(nn.CrossEntropyLoss): # pred shape: (batch_size, seq_len, vocab_size) # label shape: (batch_size, seq_len) # valid_length shape: (batch_size, ) def forward(self, pred, label, valid_length): # the sample weights shape should be (batch_size, seq_len) weights = torch.ones_like(label) weights = SequenceMask(weights, valid_length).float() self.reduction='none' output=super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label) return (output*weights).mean(dim=1) loss = MaskedSoftmaxCELoss() loss(torch.ones((3, 4, 10)), torch.ones((3,4),dtype=torch.long), torch.tensor([4,3,0])) 训练 def train_ch7(model, data_iter, lr, num_epochs, device): # Saved in d2l model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) loss = MaskedSoftmaxCELoss() tic = time.time() for epoch in range(1, num_epochs+1): l_sum, num_tokens_sum = 0.0, 0.0 for batch in data_iter: optimizer.zero_grad() X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch] Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1 Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen) l = loss(Y_hat, Y_label, Y_vlen).sum() l.backward() with torch.no_grad(): d2l.grad_clipping_nn(model, 5, device) num_tokens = Y_vlen.sum().item() optimizer.step() l_sum += l.sum().item() num_tokens_sum += num_tokens if epoch % 50 == 0: print("epoch {0:4d},loss {1:.3f}, time {2:.1f} sec".format( epoch, (l_sum/num_tokens_sum), time.time()-tic)) tic = time.time() embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0 batch_size, num_examples, max_len = 64, 1e3, 10 lr, num_epochs, ctx = 0.005, 300, d2l.try_gpu() src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt( batch_size, max_len,num_examples) encoder = Seq2SeqEncoder( len(src_vocab), embed_size, num_hiddens, num_layers, dropout) decoder = Seq2SeqDecoder( len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout) model = d2l.EncoderDecoder(encoder, decoder) train_ch7(model, train_iter, lr, num_epochs, ctx) 测试 def translate_ch7(model, src_sentence, src_vocab, tgt_vocab, max_len, device): src_tokens = src_vocab[src_sentence.lower().split(' ')] src_len = len(src_tokens) if src_len < max_len: src_tokens += [src_vocab.pad] * (max_len - src_len) enc_X = torch.tensor(src_tokens, device=device) enc_valid_length = torch.tensor([src_len], device=device) # use expand_dim to add the batch_size dimension. enc_outputs = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length) dec_state = model.decoder.init_state(enc_outputs, enc_valid_length) dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0) predict_tokens = [] for _ in range(max_len): Y, dec_state = model.decoder(dec_X, dec_state) # The token with highest score is used as the next time step input. dec_X = Y.argmax(dim=2) py = dec_X.squeeze(dim=0).int().item() if py == tgt_vocab.eos: break predict_tokens.append(py) return ' '.join(tgt_vocab.to_tokens(predict_tokens)) for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']: print(sentence + ' => ' + translate_ch7( model, sentence, src_vocab, tgt_vocab, max_len, ctx))

在这里插入图片描述
在这里插入图片描述


作者:qq_40441895



机器翻译

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章
Grace 2020-02-04
737