pytorch实现task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

Phoebe ·
更新时间:2024-11-11
· 976 次阅读

机器翻译

机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。
其主要的步骤包括数据预处理、分词、建立词典、载入数据集、Encoder-decoder、seq2seq等。

注意力机制与Seq2seq模型

在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。

与此同时,解码的目标词语可能只与原输入的部分词语有关,而并不是与所有的输入有关。例如,当把“Hello world”翻译成“Bonjour le monde”时,“Hello”映射成“Bonjour”,“world”映射成“monde”。在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。

自己概括一下,注意力机制就是加入了注意力机制矩阵的seq2seq,它的作用是对不同的元素加入权值。

实现代码为:

class Seq2SeqAttentionDecoder(d2l.Decoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqAttentionDecoder, self).__init__(**kwargs) self.attention_cell = MLPAttention(num_hiddens,num_hiddens, dropout) self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.LSTM(embed_size+ num_hiddens,num_hiddens, num_layers, dropout=dropout) self.dense = nn.Linear(num_hiddens,vocab_size) def init_state(self, enc_outputs, enc_valid_len, *args): outputs, hidden_state = enc_outputs # print("first:",outputs.size(),hidden_state[0].size(),hidden_state[1].size()) # Transpose outputs to (batch_size, seq_len, hidden_size) return (outputs.permute(1,0,-1), hidden_state, enc_valid_len) #outputs.swapaxes(0, 1) def forward(self, X, state): enc_outputs, hidden_state, enc_valid_len = state #("X.size",X.size()) X = self.embedding(X).transpose(0,1) # print("Xembeding.size2",X.size()) outputs = [] for l, x in enumerate(X): # print(f"\n{l}-th token") # print("x.first.size()",x.size()) # query shape: (batch_size, 1, hidden_size) # select hidden state of the last rnn layer as query query = hidden_state[0][-1].unsqueeze(1) # np.expand_dims(hidden_state[0][-1], axis=1) # context has same shape as query # print("query enc_outputs, enc_outputs:\n",query.size(), enc_outputs.size(), enc_outputs.size()) context = self.attention_cell(query, enc_outputs, enc_outputs, enc_valid_len) # Concatenate on the feature dimension # print("context.size:",context.size()) x = torch.cat((context, x.unsqueeze(1)), dim=-1) # Reshape x to (1, batch_size, embed_size+hidden_size) # print("rnn",x.size(), len(hidden_state)) out, hidden_state = self.rnn(x.transpose(0,1), hidden_state) outputs.append(out) outputs = self.dense(torch.cat(outputs, dim=0)) return outputs.transpose(0, 1), [enc_outputs, hidden_state, enc_valid_len] encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2) # encoder.initialize() decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2) X = torch.zeros((4, 7),dtype=torch.long) print("batch size=4\nseq_length=7\nhidden dim=16\nnum_layers=2\n") print('encoder output size:', encoder(X)[0].size()) print('encoder hidden size:', encoder(X)[1][0].size()) print('encoder memory size:', encoder(X)[1][1].size()) state = decoder.init_state(encoder(X), None) out, state = decoder(X, state) out.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape Transformer

CNNs 易于并行化,却不适合捕捉变长序列内的依赖关系。

RNNs 适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列。

为了整合CNN和RNN的优势,[Vaswani et al., 2017] 创新性地使用注意力机制设计了Transformer模型。该模型利用attention机制实现了并行化捕捉序列依赖,并且同时处理序列的每个位置的tokens,上述优势使得Transformer模型在性能优异的同时大大减少了训练时间。

编码器代码为:

class EncoderBlock(nn.Module): def __init__(self, embedding_size, ffn_hidden_size, num_heads, dropout, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = MultiHeadAttention(embedding_size, embedding_size, num_heads, dropout) self.addnorm_1 = AddNorm(embedding_size, dropout) self.ffn = PositionWiseFFN(embedding_size, ffn_hidden_size, embedding_size) self.addnorm_2 = AddNorm(embedding_size, dropout) def forward(self, X, valid_length): Y = self.addnorm_1(X, self.attention(X, X, X, valid_length)) return self.addnorm_2(Y, self.ffn(Y)) # batch_size = 2, seq_len = 100, embedding_size = 24 # ffn_hidden_size = 48, num_head = 8, dropout = 0.5 X = torch.ones((2, 100, 24)) encoder_blk = EncoderBlock(24, 48, 8, 0.5) encoder_blk(X, valid_length).shape class TransformerEncoder(d2l.Encoder): def __init__(self, vocab_size, embedding_size, ffn_hidden_size, num_heads, num_layers, dropout, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.embedding_size = embedding_size self.embed = nn.Embedding(vocab_size, embedding_size) self.pos_encoding = PositionalEncoding(embedding_size, dropout) self.blks = nn.ModuleList() for i in range(num_layers): self.blks.append( EncoderBlock(embedding_size, ffn_hidden_size, num_heads, dropout)) def forward(self, X, valid_length, *args): X = self.pos_encoding(self.embed(X) * math.sqrt(self.embedding_size)) for blk in self.blks: X = blk(X, valid_length) return X # test encoder encoder = TransformerEncoder(200, 24, 48, 8, 2, 0.5) encoder(torch.ones((2, 100)).long(), valid_length).shape

解码器代码为:

class DecoderBlock(nn.Module): def __init__(self, embedding_size, ffn_hidden_size, num_heads,dropout,i,**kwargs): super(DecoderBlock, self).__init__(**kwargs) self.i = i self.attention_1 = MultiHeadAttention(embedding_size, embedding_size, num_heads, dropout) self.addnorm_1 = AddNorm(embedding_size, dropout) self.attention_2 = MultiHeadAttention(embedding_size, embedding_size, num_heads, dropout) self.addnorm_2 = AddNorm(embedding_size, dropout) self.ffn = PositionWiseFFN(embedding_size, ffn_hidden_size, embedding_size) self.addnorm_3 = AddNorm(embedding_size, dropout) def forward(self, X, state): enc_outputs, enc_valid_length = state[0], state[1] # state[2][self.i] stores all the previous t-1 query state of layer-i # len(state[2]) = num_layers # If training: # state[2] is useless. # If predicting: # In the t-th timestep: # state[2][self.i].shape = (batch_size, t-1, hidden_size) # Demo: # love dogs ! [EOS] # | | | | # Transformer # Decoder # | | | | # I love dogs ! if state[2][self.i] is None: key_values = X else: # shape of key_values = (batch_size, t, hidden_size) key_values = torch.cat((state[2][self.i], X), dim=1) state[2][self.i] = key_values if self.training: batch_size, seq_len, _ = X.shape # Shape: (batch_size, seq_len), the values in the j-th column are j+1 valid_length = torch.FloatTensor(np.tile(np.arange(1, seq_len+1), (batch_size, 1))) valid_length = valid_length.to(X.device) else: valid_length = None X2 = self.attention_1(X, key_values, key_values, valid_length) Y = self.addnorm_1(X, X2) Y2 = self.attention_2(Y, enc_outputs, enc_outputs, enc_valid_length) Z = self.addnorm_2(Y, Y2) return self.addnorm_3(Z, self.ffn(Z)), state class TransformerDecoder(d2l.Decoder): def __init__(self, vocab_size, embedding_size, ffn_hidden_size, num_heads, num_layers, dropout, **kwargs): super(TransformerDecoder, self).__init__(**kwargs) self.embedding_size = embedding_size self.num_layers = num_layers self.embed = nn.Embedding(vocab_size, embedding_size) self.pos_encoding = PositionalEncoding(embedding_size, dropout) self.blks = nn.ModuleList() for i in range(num_layers): self.blks.append( DecoderBlock(embedding_size, ffn_hidden_size, num_heads, dropout, i)) self.dense = nn.Linear(embedding_size, vocab_size) def init_state(self, enc_outputs, enc_valid_length, *args): return [enc_outputs, enc_valid_length, [None]*self.num_layers] def forward(self, X, state): X = self.pos_encoding(self.embed(X) * math.sqrt(self.embedding_size)) for blk in self.blks: X, state = blk(X, state) return self.dense(X), state
作者:xh6312643



pytorch 注意力机制 机器翻译

需要 登录 后方可回复, 如果你还没有账号请 注册新账号