过拟合,欠拟合,梯度消失,梯度爆炸

Trina ·
更新时间:2024-09-21
· 845 次阅读

过拟合和欠拟合

我们将探究模型训练中经常出现的两类典型问题:
一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。

模型复杂度
模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征xxx和对应的标量标签 yyy 组成的训练数据集,多项式函数拟合的目标是找一个 KKK 阶多项式函数
在这里插入图片描述
来近似yyy。在上式中, wkw_kwk​是模型的权重参数,bbb是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。
给定训练数据集,模型复杂度和误差之间的关系:
在这里插入图片描述
训练数据集大小
影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。

多项式函数拟合

%matplotlib inline import torch import numpy as np import sys sys.path.append("/home/") import d2lzh1981 as d2l print(torch.__version__) n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5 features = torch.randn((n_train + n_test, 1)) poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1] + true_w[2] * poly_features[:, 2] + true_b) labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float) def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None, legend=None, figsize=(3.5, 2.5)): # d2l.set_figsize(figsize) d2l.plt.xlabel(x_label) d2l.plt.ylabel(y_label) d2l.plt.semilogy(x_vals, y_vals) if x2_vals and y2_vals: d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':') d2l.plt.legend(legend) num_epochs, loss = 100, torch.nn.MSELoss() def fit_and_plot(train_features, test_features, train_labels, test_labels): # 初始化网络模型 net = torch.nn.Linear(train_features.shape[-1], 1) # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了 # 设置批量大小 batch_size = min(10, train_labels.shape[0]) dataset = torch.utils.data.TensorDataset(train_features, train_labels) # 设置数据集 train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式 optimizer = torch.optim.SGD(net.parameters(), lr=0.01) # 设置优化函数,使用的是随机梯度下降优化 train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: # 取一个批量的数据 l = loss(net(X), y.view(-1, 1)) # 输入到网络中计算输出,并和标签比较求得损失函数 optimizer.zero_grad() # 梯度清零,防止梯度累加干扰优化 l.backward() # 求梯度 optimizer.step() # 迭代优化函数,进行参数优化 train_labels = train_labels.view(-1, 1) test_labels = test_labels.view(-1, 1) train_ls.append(loss(net(train_features), train_labels).item()) # 将训练损失保存到train_ls中 test_ls.append(loss(net(test_features), test_labels).item()) # 将测试损失保存到test_ls中 print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1]) semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('weight:', net.weight.data, '\nbias:', net.bias.data) fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:])

三项多阶式函数拟合
在这里插入图片描述


作者:一名小菜鸟的学习之路



过拟合 欠拟合 梯度

需要 登录 后方可回复, 如果你还没有账号请 注册新账号