随机梯度下降SGD算法原理和实现

Eva ·
更新时间:2024-09-21
· 602 次阅读

backpropagation

backpropagation解决的核心问题损失函数c与w,b求偏导,(c为cost(w,b))

整体来说,分两步

1.z=w*a’+b
2.a=sigmoid(z)
其中,a’表示上一层的输出值,a表示当前该层的输出值
1,输入x,正向的更新一遍所有的a值就都有了,
2,计算输出层的delta=(y-a)点乘sigmoid(z)函数对z的偏导数
3,计算输出层之前层的误差delta,该delta即为损失函数对b的偏导数,
4,然后根据公式4,求出对w的偏导数
公式推导详解

import numpy as np import random class Network(object): def __init__(self, sizes): self.number_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self,a): for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a) + b) return a def evaluate(self,test_data): test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def derivate(self,output,y): return (output-y) def backprop(self,x,y): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] activation = x activations = [x] zs = [] for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) delta = self.derivate(activations[-1], y) * sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for i in range(2,self.number_layers): z = zs[-i] ps = sigmoid_prime(z) delta = np.dot(self.weights[-i+1].transpose(), delta) * ps nabla_b[-i] = delta nabla_w[-i] = np.dot(delta, activations[-i-1].transpose()) return nabla_b, nabla_w def update_mini_batch(self, mini_batch, eta): nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_b = [np.zeros(b.shape) for b in self.biases] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w - (eta/len(mini_batch) * nw) for w, nw in zip(self.weights, nabla_w)] self.biases = [b - (eta/len(mini_batch) * nb) for b, nb in zip(self.biases, nabla_b)] def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data:n_test = len(test_data) n = len(training_data) for j in range(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size) ] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print('Epoch{0} : {1}/{2} '.format(j, self.evaluate(test_data), n_test)) else: print('Epoch complete!'.format(j)) def sigmoid(z): return (1.0 / (1.0+np.exp(-z))) def sigmoid_prime(z): return sigmoid(z) * (1-sigmoid(z))
作者:mercies



sgd 梯度

需要 登录 后方可回复, 如果你还没有账号请 注册新账号