233 Matrix(矩阵快速幂)

Miette ·
更新时间:2024-11-10
· 922 次阅读

233 Matrix

In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 … in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333… (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333…) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,…,a n,0, could you tell me a n,m in the 233 matrix?
Input
There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,…,a n,0(0 ≤ a i,0 < 2 31).
Output
For each case, output a n,m mod 10000007.
Sample Input

1 1
1
2 2
0 0
3 7
23 47 16

Sample Output

234
2799
72937

Hint
在这里插入图片描述

思路:
题目告诉 a[i][j]=a[i-1][j]+a[i][j-1] 的关系,然后计算出矩阵,带入板子。

完整代码:

#include #include using namespace std; typedef long long ll; const ll MOD=10000007; #define mod(x) ((x)%MOD) #define maxn 15 ll n,nn; struct mat //矩阵 { ll m[maxn][maxn]; mat() { memset(m,0,sizeof(m)); //记得清空 } }; //矩阵乘法 mat mat_mul(mat b,mat a) //要是左乘我之前错了好几次 { mat ret; for(int i=1;i<=n+2;i++) { for(int j=1;j<=n+2;j++) { for(int k=1;k<=n+2;k++) { ret.m[i][j]=mod(ret.m[i][j]+b.m[i][k]*a.m[k][j]); } } } return ret; } //矩阵快速幂 mat pow_mat(mat a,ll x) { mat ret; for(int i=1;i>=1; } return ret; } /** 板子和其他的都相似就是左乘不一样 */ int main() { while(cin>>n>>nn) { mat a,b; a.m[1][1]=23; for(int i=1;i>a.m[i+1][1]; } a.m[n+2][1]=3; for(int i=1;i<=n+1;i++) { b.m[i][1]=10; } for(int i=1;i<=n+2;i++) { b.m[i][n+2]=1; } for(int i=1;i<n+2;i++) { for(int j=2;j<=i;j++) { b.m[i][j]=1; } } b=pow_mat(b,nn); a=mat_mul(b,a); cout<<a.m[n+1][1]<<endl; } return 0; }
作者:Water_Coder



matrix 矩阵

需要 登录 后方可回复, 如果你还没有账号请 注册新账号