叁拾肆- sklearn 根据样本对文本情绪进行分类

Crystal ·
更新时间:2024-11-14
· 884 次阅读

1。前言

通过 sklearn 对从爬虫捉取的网页文本进行情绪分类,只是简单化的工科内容而不是理科内容(无理论分析)。

2。思路

MongoDB 中随机抽取数据,然后用jieba分词再进行分词,然后用 sklearn 做学习样本进行分类
jieba分词后可能会多达4、5万个词,所以必须计算各词信息熵,把信息熵高的词汇剔除掉。
剩余信息熵低的关键字sklearn 包进行学习。

3。爬虫捉取内容

廿捌-原爬虫项目加入客制化内容,Python 读取 URL 域名
通过前期爬虫项目捉取内容,并且手动对接近1000多条数据进行人工情绪分类。
数据内容
人工分类页如下:
手动分类

4。分析用代码 4-1) 读取MongoDB思路

这个其实就从数据库抽样。通过以下 MongoDB Filiter:

curPos = colSample.aggregate( [{'$match': {'cf': True, 'e': 1}}, {'$sample': {'size': 300}}]) 4-2) 分词并整理为相应关键字

分词是用jieba包进行分词的,我只是简单做,并没用比较复杂的分词方式。
遍历3个(正面、负面、无用)情绪集之后,把他们按分词之后的词按统一顺序排,代码如下:

# 初始化定义 # dictSampleOfNew={'kw':[],'e':1} arrXPreTrain = [] arrYPreTrain = [] # 定义数据记录 dictAllResult = {'intIndexNow': 0, 'arrXPreTrain': [], 'arrYPreTrain': [], 'dictKW': {}, 'arrSample': [], 'arrColunms': []} # 把 MongoDB 的 Cursor 遍历转为数组 def ToGrepSampleKW(curSamples, dictInAllResult): for eleSamples in curSamples: # 不设睡眠时间很容易 CPU 爆掉 time.sleep(0.05) genSampleWord = jieba.cut(eleSamples['ct'], cut_all=False) dictSampleOfNew = {'kw': [], 'e': eleSamples['e']} # 对分词之后的每个关键字进行处理 for eleKW in genSampleWord: # 如果前期没有该关键字即进行下一步 if not eleKW in dictSampleOfNew['kw']: dictSampleOfNew['kw'].append(eleKW) # 如果所有样本都不存在此关键字即存在全局字典内 if not eleKW in dictInAllResult['dictKW'].keys(): dictInAllResult['dictKW'][eleKW] = dictInAllResult['intIndexNow'] dictInAllResult['intIndexNow'] += 1 dictInAllResult['arrColunms'].append(eleKW) dictInAllResult['arrSample'].append(dictSampleOfNew) return dictInAllResult # 做成一个矩阵,如果该样本含有该关键字,即对应位置为 True,否则为 False # 样本大致为 # 我 爱 中国 # 样本1 True False True # 样本2 False True True def ToArraySample(dictInAllResult): for dictEle in dictInAllResult['arrSample']: arrNewSample = [False for intX in range( dictInAllResult['intIndexNow'])] for eleKWFI in dictEle['kw']: arrNewSample[dictInAllResult['dictKW'][eleKWFI]] = True dictInAllResult['arrXPreTrain'].append(arrNewSample) dictInAllResult['arrYPreTrain'].append(dictEle['e']) return dictInAllResult dictAllResult = ToGrepSampleKW(curPos, dictAllResult) print('Done Pos ' + time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToGrepSampleKW(curUseless, dictAllResult) print('Done Useless '+time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToGrepSampleKW(curNeg, dictAllResult) print('Done Neg '+time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToArraySample(dictAllResult) print('Done Arr '+time.strftime('%Y-%m-%d %H:%M:%S')) 4-3) 计算关键字信息熵

关于信息熵的计算我是参考了:
python, pandas 实现信息熵计算
代码为:

# DataFrame 中第几列 def get_entropy(data_df, columns=None): time.sleep(0.01) if (columns is None): raise "the columns must be not empty!" # Information Entropy pe_value_array = data_df[columns].unique() ent = 0.0 for x_value in pe_value_array: p = float(data_df[data_df[columns] == x_value].shape[0]) / data_df.shape[0] logp = np.log2(p) ent -= p * logp return ent # 有多少条样本 intLenOfXPreT = len(arrXPreTrain) arrKWForEntropy = [] # 遍历每一个关键字 for intI in range(dictAllResult['intIndexNow']): # 所有样本中该关键字是否存在 arrTmp = [arrXPreTrain[intJ][intI] for intJ in range(intLenOfXPreT)] dfX = pd.DataFrame(arrTmp) # 打印现在进度 if intI % 1000 ==0: print(intI) # 打印该关键字信息熵 print( dictAllResult['arrColunms'][intI]+' 信息熵为: ' + str(get_entropy(dfY[dfX[dictAllResult['arrColunms'][intI]]==True],0))) # 在数组 arrKWForEntropy 中插入一个关键字以及对应信息熵 if dfY[dfX[0]].shape[0] > 1: arrKWForEntropy.append( [dictAllResult['arrColunms'][intI], get_entropy(dfY[dfX[0]], 0)]) 4-4) 关键字信息熵分桶

关于 pandas分桶其实可以参考很多文章,在此我就不再写了,此段代码主要是为了把高信息熵跟低信息熵区分开:

dfEntropy = pd.DataFrame(arrKWForEntropy, columns=['KW', 'IE']) print(dfEntropy.head(10)) # 分桶 cutB = pd.cut(dfEntropy['IE'], 2, labels=['L', 'H']) dfEntropy['IEBin'] = cutB print(dfEntropy[dfEntropy['IEBin'] == 'L']) nparrKWWaitFor = dfEntropy[dfEntropy['IEBin'] == 'L']['KW'].values

关于分桶使用 cut还是 qcut,我当初有想过使用 qcut,但 qcut 可能会造成关键字过多,对后续处理很麻烦,而且有些高熵的都会混进去。

4-5) 整理并交叉验证分开

使用sklearntrain_test_split 进行交叉验证分开。

# 重新对低熵关键字在样本中排序 arrForTrain = [[] for intI in range(len(arrXPreTrain))] for nparrEle in nparrKWWaitFor: intJ = dictAllResult['dictKW'][nparrEle] for intK in range(intLenOfXPreT): arrForTrain[intK].append(arrXPreTrain[intK][intJ]) # 过滤无用的样本 arrXForTrainReal = [] arrYForTrainReal = [] for intI in range(len(arrYPreTrain)): if(arrYPreTrain[intI] != 0): arrXForTrainReal.append(arrForTrain[intI]) arrYForTrainReal.append(arrYPreTrain[intI]) # 交叉验证脚本 arrXtrain, arrXtest, arrYtrain, arrYtest = train_test_split( arrXForTrainReal, arrYForTrainReal, test_size=0.2) 4-6) 评分

只是一段评分的代码。
其实并没有对比过很多的方法,也没用调参包。
主要我是思路我是觉得不同词语的存在与否,是多维的,而并不是统一的,所以用决策树可能会出现有某些词语出现而出现误导的情况。
所以就随便选几个根据维度进行学习的算法。

# ------- SKLearn 测试开始 ------ rcfClassifier = RandomForestClassifier() rcfClassifier = rcfClassifier.fit(arrXtrain,arrYtrain) clfScore = rcfClassifier.score(arrXtest,arrYtest) print("随机森林评分: "+str(clfScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) clfBagging = BaggingClassifier(base_estimator=LinearSVC( random_state=0, tol=1e-05, max_iter=10000)) clfBagging.fit(arrXtrain, arrYtrain) clfScore = clfBagging.score(arrXtest, arrYtest) print("装袋 SVC 评分: "+str(clfScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) clfAdaB = AdaBoostClassifier() clfAdaB.fit(arrXtrain, arrYtrain) clfScore = clfAdaB.score(arrXtest,arrYtest) print("AdaBoost 评分: "+str(clScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) # # ---------------------------------- 4-7) 输出结果

看到结果,那我就直接用 SVC了~

# # ---------------------------------- >>> clfScore = rcfClassifier.score(arrXtest,arrYtest) >>> >>> print("随机森林评分: "+str(clfScore)) 随机森林评分: 0.7916666666666666 >>> print(time.strftime('%Y-%m-%d %H:%M:%S')) 2020-02-22 15:10:16 >>> >>> clfBagging = BaggingClassifier(base_estimator=LinearSVC( ... random_state=0, tol=1e-05, max_iter=10000)) >>> clfBagging.fit(arrXtrain, arrYtrain) BaggingClassifier(base_estimator=LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=10000, multi_class='ovr', penalty='l2', random_state=0, tol=1e-05, verbose=0), bootstrap=True, bootstrap_features=False, max_features=1.0, max_samples=1.0, n_estimators=10, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False) >>> clfScore = clfBagging.score(arrXtest, arrYtest) >>> >>> print("装袋 SVC 评分: "+str(clfScore)) 装袋 SVC 评分: 0.825 >>> print(time.strftime('%Y-%m-%d %H:%M:%S')) 2020-02-22 15:10:17 >>> >>> clfAdaB = AdaBoostClassifier() >>> clfAdaB.fit(arrXtrain, arrYtrain) AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1.0, n_estimators=50, random_state=None) >>> clfScore = clfAdaB.score(arrXtest,arrYtest) >>> >>> print("AdaBoost 评分: "+str(clfScore)) AdaBoost 评分: 0.725 >>> print(time.strftime('%Y-%m-%d %H:%M:%S')) 2020-02-22 15:10:20 4-8) 完整代码 import jieba import pymongo import time import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.svm import LinearSVC dbClient = pymongo.MongoClient('mongodb://127.0.0.1:27017/') dbMongo = dbClient['dbSample'] dbMongo.authenticate('Berry', 'Berry') colSample = dbMongo['tbSample'] curPos = colSample.aggregate( [{'$match': {'cf': True, 'e': 1}}, {'$sample': {'size': 300}}]) curUseless = colSample.aggregate( [{'$match': {'cf': True, 'e': 0}}, {'$sample': {'size': 200}}]) curNeg = colSample.aggregate( [{'$match': {'cf': True, 'e': -1}}, {'$sample': {'size': 300}}]) dictKW = {} arrSample = [] # dictSampleOfNew={'kw':[],'e':1} intIndexNow = 0 arrXPreTrain = [] arrYPreTrain = [] dictAllResult = {'intIndexNow': 0, 'arrXPreTrain': [], 'arrYPreTrain': [], 'dictKW': {}, 'arrSample': [], 'arrColunms': []} def ToGrepSampleKW(curSamples, dictInAllResult): for eleSamples in curSamples: time.sleep(0.05) genSampleWord = jieba.cut(eleSamples['ct'], cut_all=False) dictSampleOfNew = {'kw': [], 'e': eleSamples['e']} for eleKW in genSampleWord: if not eleKW in dictSampleOfNew['kw']: dictSampleOfNew['kw'].append(eleKW) if not eleKW in dictInAllResult['dictKW'].keys(): dictInAllResult['dictKW'][eleKW] = dictInAllResult['intIndexNow'] dictInAllResult['intIndexNow'] += 1 dictInAllResult['arrColunms'].append(eleKW) dictInAllResult['arrSample'].append(dictSampleOfNew) return dictInAllResult def ToArraySample(dictInAllResult): for dictEle in dictInAllResult['arrSample']: arrNewSample = [False for intX in range( dictInAllResult['intIndexNow'])] for eleKWFI in dictEle['kw']: arrNewSample[dictInAllResult['dictKW'][eleKWFI]] = True dictInAllResult['arrXPreTrain'].append(arrNewSample) dictInAllResult['arrYPreTrain'].append(dictEle['e']) return dictInAllResult dictAllResult = ToGrepSampleKW(curPos, dictAllResult) print('Done Pos ' + time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToGrepSampleKW(curUseless, dictAllResult) print('Done Useless '+time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToGrepSampleKW(curNeg, dictAllResult) print('Done Neg '+time.strftime('%Y-%m-%d %H:%M:%S')) dictAllResult = ToArraySample(dictAllResult) print('Done Arr '+time.strftime('%Y-%m-%d %H:%M:%S')) curPos.close() curUseless.close() curNeg.close() dbClient.close() arrXPreTrain = dictAllResult['arrXPreTrain'] arrYPreTrain = dictAllResult['arrYPreTrain'] dfY = pd.DataFrame(arrYPreTrain) def get_entropy(data_df, columns=None): time.sleep(0.01) if (columns is None): raise "the columns must be not empty!" # Information Entropy pe_value_array = data_df[columns].unique() ent = 0.0 for x_value in pe_value_array: p = float(data_df[data_df[columns] == x_value].shape[0]) / data_df.shape[0] logp = np.log2(p) ent -= p * logp return ent intLenOfXPreT = len(arrXPreTrain) arrKWForEntropy = [] for intI in range(dictAllResult['intIndexNow']): arrTmp = [arrXPreTrain[intJ][intI] for intJ in range(intLenOfXPreT)] dfX = pd.DataFrame(arrTmp) # if intI % 1000 ==0: # print(intI) # print( dictAllResult['arrColunms'][intI]+' 信息熵为: ' + # str(get_entropy(dfY[dfX[dictAllResult['arrColunms'][intI]]==True],0))) if dfY[dfX[0]].shape[0] > 1: arrKWForEntropy.append( [dictAllResult['arrColunms'][intI], get_entropy(dfY[dfX[0]], 0)]) dfEntropy = pd.DataFrame(arrKWForEntropy, columns=['KW', 'IE']) print(dfEntropy.head(10)) cutB = pd.cut(dfEntropy['IE'], 2, labels=['L', 'H']) dfEntropy['IEBin'] = cutB print(dfEntropy[dfEntropy['IEBin'] == 'L']) nparrKWWaitFor = dfEntropy[dfEntropy['IEBin'] == 'L']['KW'].values arrForTrain = [[] for intI in range(len(arrXPreTrain))] for nparrEle in nparrKWWaitFor: intJ = dictAllResult['dictKW'][nparrEle] for intK in range(intLenOfXPreT): arrForTrain[intK].append(arrXPreTrain[intK][intJ]) arrXForTrainReal = [] arrYForTrainReal = [] for intI in range(len(arrYPreTrain)): if(arrYPreTrain[intI] != 0): arrXForTrainReal.append(arrForTrain[intI]) arrYForTrainReal.append(arrYPreTrain[intI]) arrXtrain, arrXtest, arrYtrain, arrYtest = train_test_split( arrXForTrainReal, arrYForTrainReal, test_size=0.2) # ------- SKLearn 测试开始 ------ rcfClassifier = RandomForestClassifier() rcfClassifier = rcfClassifier.fit(arrXtrain,arrYtrain) clfScore = rcfClassifier.score(arrXtest,arrYtest) print("随机森林评分: "+str(clfScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) clfBagging = BaggingClassifier(base_estimator=LinearSVC( random_state=0, tol=1e-05, max_iter=10000)) clfBagging.fit(arrXtrain, arrYtrain) clfScore = clfBagging.score(arrXtest, arrYtest) print("装袋 SVC 评分: "+str(clfScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) clfAdaB = AdaBoostClassifier() clfAdaB.fit(arrXtrain, arrYtrain) clfScore = clfAdaB.score(arrXtest,arrYtest) print("AdaBoost 评分: "+str(clScore)) print(time.strftime('%Y-%m-%d %H:%M:%S')) # # ---------------------------------- 5。后续

保存 sklearn 生成的模型之后,直接以后就能用了。
打算以后对新捉取的信息进行识别之后再作为样本,重新再生成新的模型
以后再说吧。


作者:BerryBC



样本 分类

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章