基于奇异值分解(SVD)的图片压缩实践

Paloma ·
更新时间:2024-11-10
· 935 次阅读

文章目录1. 前言2. 原理简介2.1 SVD定义3. 实践代码4. 参考文献 1. 前言

数字图片在计算机中是以矩阵形式存储的。所以可以通过矩阵理论和矩阵算法对数字图像进行分析和处理。本文通过对图片进行SVD压缩,对不同的参数下的压缩效果进行对比。

SVD概念可以参考:《统计学习方法》–奇异值分解(Singular Value Decomposition,SVD)

2. 原理简介

彩色图片有3个图层,RGB(红、绿、蓝)也就是矩阵的一个位置上存储了3个基色的数值,由3个基色混合成不同的色彩。

通过对3个图层矩阵,分别进行SVD近似,SVD奇异值是唯一的,可以取前 k 个最大的奇异值进行近似表达,最后再将3个图层的矩阵数据合并,用较少的数据去表达图片。

2.1 SVD定义

Am×n=UΣVTUUT=ImVVT=InΣ=diag(σ1,σ2,...,σp)σ1≥σ2≥...≥σp≥0p=min⁡(m,n)A_{m \times n} = U \Sigma V^T\\ UU^T=I_m\\ VV^T=I_n\\ \Sigma=diag(\sigma_1,\sigma_2,...,\sigma_p) \\ \sigma_1\ge \sigma_2 \ge...\ge\sigma_p \ge0\\ p=\min(m,n)Am×n​=UΣVTUUT=Im​VVT=In​Σ=diag(σ1​,σ2​,...,σp​)σ1​≥σ2​≥...≥σp​≥0p=min(m,n)

UΣVTU \Sigma V^TUΣVT 称为矩阵 AAA 的奇异值分解(SVD),UUU 是 mmm 阶正交矩阵, VVV 是 nnn 阶正交矩阵,Σ\SigmaΣ 是 m×nm \times nm×n 的对角矩阵 σi\sigma_iσi​ 称为矩阵 AAA 的奇异值 UUU 的列向量,左奇异向量 VVV 的列向量,右奇异向量

在这里插入图片描述
Datam×n≈U[:,0:k]Σ[0:k,0:k]VT[0:k,:]Data_{m\times n} \approx U[ : , 0:k] \Sigma[0:k,0:k]V^T[0:k, :]Datam×n​≈U[:,0:k]Σ[0:k,0:k]VT[0:k,:]

3. 实践代码 # -*- coding:utf-8 -*- # @Python Version: 3.7 # @Time: 2020/4/21 23:38 # @Author: Michael Ming # @Website: https://michael.blog.csdn.net/ # @File: 15.svd_pic_compress.py # @Reference: https://blog.csdn.net/weixin_44344462/article/details/89401727 import numpy as np import matplotlib.pyplot as plt def zip_img_by_svd(img, plotId, rate=0.8): zip_img = np.zeros(img.shape) u_shape = 0 sigma_shape = 0 vT_shape = 0 for chanel in range(3): # 3个图层 u, sigma, v = np.linalg.svd(img[:, :, chanel]) # numpy svd函数 sigma_i = 0 temp = 0 while (temp / np.sum(sigma)) < rate: # 选取的奇异值和需要达到设定的权重 temp += sigma[sigma_i] sigma_i += 1 SigmaMat = np.zeros((sigma_i, sigma_i)) # 选取了sigma_i 最大的奇异值 for i in range(sigma_i): SigmaMat[i, i] = sigma[i] # 将奇异值填充到Sigma对角矩阵 zip_img[:, :, chanel] = u[:, 0:sigma_i].dot(SigmaMat).dot(v[0:sigma_i, :]) # 将分解得到的3个矩阵相乘,得到压缩后的近似矩阵 u_shape = u[:, 0:sigma_i].shape sigma_shape = SigmaMat.shape vT_shape = v[0:sigma_i, :].shape for i in range(3): # 对三个通道的矩阵数值进行归一化处理 MAX = np.max(zip_img[:, :, i]) MIN = np.min(zip_img[:, :, i]) zip_img[:, :, i] = (zip_img[:, :, i] - MIN) / (MAX - MIN) zip_img = np.round(zip_img * 255).astype("uint8") # 不乘255图片是黑的(接近0,0,0),数据类型uint8 plt.imsave("zip_svd_img.jpg", zip_img) # 保存压缩后的图片 zip_rate = (img.size - 3 * ( u_shape[0] * u_shape[1] + sigma_shape[0] * sigma_shape[1] + vT_shape[0] * vT_shape[1])) / (zip_img.size) f = plt.subplot(3, 3, plotId) f.imshow(zip_img) f.set_title("SVD压缩率 %.4f,奇异值数量:%d" % (zip_rate, sigma_i)) print("设置的压缩率:", rate) print("使用的奇异值数量:", sigma_i) print("原始图片大小:", img.shape) print("压缩后用到的矩阵大小:3x({}+{}+{})".format(u_shape, sigma_shape, vT_shape)) print("压缩率为:", zip_rate) if __name__ == '__main__': imgfile = "svd_img.jpg" plt.figure(figsize=(12, 12)) plt.rcParams['font.sans-serif'] = 'SimHei' # 消除中文乱码 img = plt.imread(imgfile) f1 = plt.subplot(331) # 绘制子图,3行3列,3*3个子图,现在画第1幅 f1.imshow(img) f1.set_title("原始图片") for i in range(8): # 再画8个子图 rate = (i + 1) / 10.0 # 压缩率 10% - 80% zip_img_by_svd(img, i + 2, rate) plt.suptitle('图片SVD效果对比', fontsize=17, y=0.02) # y偏移距离 plt.show()

在这里插入图片描述

可以看出在使用128个奇异值的SVD压缩情况下,就可以得到跟原图差不多效果的图片 原图是703x800的尺寸,SVD使用的矩阵 ((703, 128)+(128, 128)+(128, 800))=208768 可以少使用的矩阵数据比例为(703*800*3-208768*3)/(703*800*3)= 62.88% 可以只用37.12%的数据量去近似表达原始图片,是不是很酷!!! 在网络传输图片的过程中,终端用户可能点击,也可能不点击,那我都给他们发送SVD后的图片矩阵数据(减少了当次传输数据量),然后在终端进行矩阵运算得到压缩后的图片,当用户点击图片后,再进行传输原图片(1、用户点击是分散的,可以降低统一发送原图的网络拥挤现象;2、有的用户也不会点击,就避免了传输原图,达到了压缩的目的,节省流量) 微信收到的图片、小米手机云相册的缩略图等都可能用到类似的技术来节省空间

我是外行,自己想的结论,不对的地方,请大佬指点,感谢!

4. 参考文献

本文参考了以下两篇文章,对作者表示感谢!

利用SVD进行图像压缩(附Python代码) 用SVD压缩图像
作者:Michael阿明



奇异值分解 压缩 svd 图片 图片压缩

需要 登录 后方可回复, 如果你还没有账号请 注册新账号