task06--批量归一化

Damara ·
更新时间:2024-11-10
· 924 次阅读

批量归一化(BatchNormalization)

BN算法(Batch Normalization)其强大之处如下:

(1)、你可以选择比较大的初始学习率,让你的训练速度飙涨。以前还需要慢慢调整学习率,甚至在网络训练到一半的时候,还需要想着学习率进一步调小的比例选择多少比较合适,现在我们可以采用初始很大的学习率,然后学习率的衰减速度也很大,因为这个算法收敛很快。当然这个算法即使你选择了较小的学习率,也比以前的收敛速度快,因为它具有快速训练收敛的特性;

(2)、你再也不用去理会过拟合中drop out、L2正则项参数的选择问题,采用BN算法后,你可以移除这两项了参数,或者可以选择更小的L2正则约束参数了,因为BN具有提高网络泛化能力的特性;

(3)、再也不需要使用使用局部响应归一化层了(局部响应归一化是Alexnet网络用到的方法,搞视觉的估计比较熟悉),因为BN本身就是一个归一化网络层;

(4)、可以把训练数据彻底打乱(防止每批训练的时候,某一个样本都经常被挑选到,文献说这个可以提高1%的精度,这句话我也是百思不得其解啊)。

开始讲解算法前,先来思考一个问题:我们知道在神经网络训练开始前,都要对输入数据做一个归一化处理,那么具体为什么需要归一化呢?归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低;另外一方面,一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每次迭代都去学习适应不同的分布,这样将会大大降低网络的训练速度,这也正是为什么我们需要对数据都要做一个归一化预处理的原因。

对于深度网络的训练是一个复杂的过程,只要网络的前面几层发生微小的改变,那么后面几层就会被累积放大下去。一旦网络某一层的输入数据的分布发生改变,那么这一层网络就需要去适应学习这个新的数据分布,所以如果训练过程中,训练数据的分布一直在发生变化,那么将会影响网络的训练速度。

我们知道网络一旦train起来,那么参数就要发生更新,除了输入层的数据外(因为输入层数据,我们已经人为的为每个样本归一化),后面网络每一层的输入数据分布是一直在发生变化的,因为在训练的时候,前面层训练参数的更新将导致后面层输入数据分布的变化。以网络第二层为例:网络的第二层输入,是由第一层的参数和input计算得到的,而第一层的参数在整个训练过程中一直在变化,因此必然会引起后面每一层输入数据分布的改变。我们把网络中间层在训练过程中,数据分布的改变称之为:“Internal Covariate Shift”。

原文链接:https://blog.csdn.net/hjimce/article/details/50866313

对输入的标准化(浅层模型)

处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。
标准化处理输入数据使各个特征的分布相近

批量归一化(深度模型)

利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

1.对全连接层做批量归一化

位置:全连接层中的仿射变换和激活函数之间。
全连接:
x=Wu+boutput=ϕ(x) \boldsymbol{x} = \boldsymbol{W\boldsymbol{u} + \boldsymbol{b}} \\ output =\phi(\boldsymbol{x}) x=Wu+boutput=ϕ(x)

批量归一化:
output=ϕ(BN(x)) output=\phi(\text{BN}(\boldsymbol{x}))output=ϕ(BN(x))

y(i)=BN(x(i)) \boldsymbol{y}^{(i)} = \text{BN}(\boldsymbol{x}^{(i)}) y(i)=BN(x(i))
输入是d维的(i=1…d),这里要对每一维度进行归一化
m是批量大小
μB←1m∑i=1mx(i), \boldsymbol{\mu}_\mathcal{B} \leftarrow \frac{1}{m}\sum_{i = 1}^{m} \boldsymbol{x}^{(i)}, μB​←m1​i=1∑m​x(i),
σB2←1m∑i=1m(x(i)−μB)2, \boldsymbol{\sigma}_\mathcal{B}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m}(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B})^2, σB2​←m1​i=1∑m​(x(i)−μB​)2,
x^(i)←x(i)−μBσB2+ϵ, \hat{\boldsymbol{x}}^{(i)} \leftarrow \frac{\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B}}{\sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon}}, x^(i)←σB2​+ϵ​x(i)−μB​​,

这⾥ϵ > 0是个很小的常数,保证分母大于0
这篇博客里有一个计算图

如果是仅仅使用上面的归一化公式,对网络某一层A的输出数据做归一化,然后送入网络下一层B,这样是会影响到本层网络A所学习到的特征的。比如我网络中间某一层学习到特征数据本身就分布在S型激活函数的两侧,你强制把它给我归一化处理、标准差也限制在了1,把数据变换成分布于s函数的中间部分,这样就相当于我这一层网络所学习到的特征分布被你搞坏了,这可怎么办?于是文献使出了一招式:变换重构,引入了可学习参数γ、β,这就是算法关键之处:

y(i)←γ⊙x^(i)+β. {\boldsymbol{y}}^{(i)} \leftarrow \boldsymbol{\gamma} \odot \hat{\boldsymbol{x}}^{(i)} + \boldsymbol{\beta}. y(i)←γ⊙x^(i)+β.

引入可学习参数:拉伸参数γ和偏移参数β。若γ=σB2+ϵ\boldsymbol{\gamma} = \sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon}γ=σB2​+ϵ​和β=μB\boldsymbol{\beta} = \boldsymbol{\mu}_\mathcal{B}β=μB​,批量归一化无效。

2.对卷积层做批量归⼀化

BN层是对于每个神经元做归一化处理,甚至只需要对某一个神经元进行归一化,而不是对一整层网络的神经元进行归一化。既然BN是对单个神经元的运算,那么在CNN中卷积层上要怎么搞?假如某一层卷积层有6个特征图,每个特征图的大小是100100,这样就相当于这一层网络有6100100个神经元,如果采用BN,就会有6100*100个参数γ、β,这样岂不是太恐怖了。因此卷积层上的BN使用,其实也是使用了类似权值共享的策略,把一整张特征图当做一个神经元进行处理。

卷积神经网络经过卷积后得到的是一系列的特征图,如果min-batch sizes为m,那么网络某一层输入数据可以表示为四维矩阵(m,f,w,h),m为min-batch sizes,f为特征图个数,w、h分别为特征图的宽高。在CNN中我们可以把每个特征图看成是一个特征处理(一个神经元),因此在使用Batch Normalization,mini-batch size 的大小就是:mw*h,于是对于每个特征图都只有一对可学习参数:γ、β。说白了吧,这就是相当于求取所有样本所对应的一个特征图的所有神经元的平均值、方差,然后对这个特征图神经元做归一化。
参考的文章

位置:卷积计算之后、应⽤激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。
计算:对单通道,batchsize=m,卷积计算输出=pxq
对该通道中m×p×q个元素同时做批量归一化,使用相同的均值和方差。

3.预测时的批量归⼀化

训练:以batch为单位,对每个batch计算均值和方差。
预测:用移动平均估算整个训练数据集的样本均值和方差。

从零实现 import time import torch from torch import nn, optim import torch.nn.functional as F import torchvision import sys sys.path.append("/home/kesci/input/") import d2lzh1981 as d2l device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum): # 判断当前模式是训练模式还是预测模式 if not is_training: # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差 X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps) else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: # 使用全连接层的情况,计算特征维上的均值和方差 mean = X.mean(dim=0) var = ((X - mean) ** 2).mean(dim=0) else: # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持 # X的形状以便后面可以做广播运算 mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True) var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True) # 训练模式下用当前的均值和方差做标准化 X_hat = (X - mean) / torch.sqrt(var + eps) # 更新移动平均的均值和方差 moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta # 拉伸和偏移 return Y, moving_mean, moving_var class BatchNorm(nn.Module): def __init__(self, num_features, num_dims): super(BatchNorm, self).__init__() if num_dims == 2: shape = (1, num_features) #全连接层输出神经元 else: shape = (1, num_features, 1, 1) #通道数 # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1 self.gamma = nn.Parameter(torch.ones(shape)) self.beta = nn.Parameter(torch.zeros(shape)) # 不参与求梯度和迭代的变量,全在内存上初始化成0 self.moving_mean = torch.zeros(shape) self.moving_var = torch.zeros(shape) def forward(self, X): # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上 if self.moving_mean.device != X.device: self.moving_mean = self.moving_mean.to(X.device) self.moving_var = self.moving_var.to(X.device) # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false Y, self.moving_mean, self.moving_var = batch_norm(self.training, X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9) return Y 残差网络(ResNet)

深度学习的问题:深度CNN网络达到一定深度后再一味地增加层数并不能带来进一步地分类性能提高,反而会招致网络收敛变得更慢,准确率也变得更差。

残差块(Residual Block)

恒等映射:
左边:f(x)=x
右边:f(x)-x=0 (易于捕捉恒等映射的细微波动)

Image Name

在残差块中,输⼊可通过跨层的数据线路更快 地向前传播。


作者:yinge1523



批量归一化 归一化

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章