HDU1291-Closing Ceremony of Sunny Cup

Tyne ·
更新时间:2024-11-14
· 947 次阅读

The 3rd Zhejiang Provincial Collegiate Programming Contest will be held at Zhejiang University in 05/13/2006. The contest attracts many excellent programmer, of course, including 18 acmers of HDU,They are Lu xiaojun, Wang rongtao,Zhou feng;Gao bo, Li weigang, Xu haidong;Lin le,Lin jie,Li huansen;Mou changqing, Zhou lin, Wang dongdong;Ying qili,Lai li,Weng jianfei;Wang jun,Wang jianxing and Liu qi.

I don’t know which team will be champion,but I know that closure will be held at Linshui Hall,which is a very beautiful classroom near the river.

Now I am thinking a question, supposing attendance is a square number (N^2) and the number of the seat is a square number too( N lines ,and N seats each line), If orgazizer is so bored that they arrange sits according to player’s height (Supposing all players’ heights are dirrerent). The arranging rules can be described as following:

A cannot sit at back of B when A is short than B. A cannot sit at right of B when A is short than B.

The question left to you is that: " How many dirrerent arranging styles you can get according to the rules?"
Input
Input file contains multiple test cases, and each test case is described with an integer N(1<=N<=20),you can get its meaning throught problem description.
Output
For each test case ,you should output a result,and one result per line.
Sample Input
2
3
Sample Output
2
42

分析:

题意:
n阶方阵,在里面在里面填入1~n*n的数字,在填满方阵的同时满足每个位置的左边的数和下边的数都比它小,问满足要求的排列方法有多少种?

感想:
我太难了!想了一晚上都没有想到解法,网上也没有题解,唉!皇天不负有人,终于在vjudge看到了不知道哪个神仙的java代码.于是我从他的代码中总结出了一个公式,我也不知道这公式咋来的,只能问问学长了(公式太长,将分子分母分开):
公式分子:(n2)!/((n-1)2+1)!
公式分母:(2(n-1)!)2!(2n-1)/(n!)2

代码: #include #include #define N 25 using namespace std; int dp[N][1005]; int main() { int n; dp[1][0]=dp[1][1]=dp[2][0]=1; dp[2][1]=dp[3][0]=dp[3][1]=2; dp[3][2]=4; for(int i=4;i<=20;i++) { int len=dp[i-1][0],v=0; for(int j=0;j<=len;j++) { dp[i][j]=dp[i-1][j]; } for(int k=(i-1)*(i-1)+1;k<=i*i;k++) { v=0; len=dp[i][0]; for(int j=1;j<=len;j++) { dp[i][j]=dp[i][j]*k+v; v=dp[i][j]/10; dp[i][j]%=10; } while(v) { dp[i][++len]=v%10; v/=10; } dp[i][0]=len; } for(int k=i;k0;j--) { v=v*10+dp[i][j]; dp[i][j]=v/(k*k); v%=(k*k); } len=dp[i][0]; while(!dp[i][len]) { len--; } dp[i][0]=len; } v=0; for(int j=dp[i][0];j>0;j--) { v=v*10+dp[i][j]; dp[i][j]=v/(2*i-1); v%=(2*i-1); } len=dp[i][0]; while(!dp[i][len]) { len--; } dp[i][0]=len; } while(~scanf("%d",&n)) { for(int i=dp[n][0];i>0;i--) { printf("%d",dp[n][i]); } printf("\n"); } return 0; }
作者:IT-LittleM



hdu

需要 登录 后方可回复, 如果你还没有账号请 注册新账号