keras实现GoogLeNet-InceptionV1

Halona ·
更新时间:2024-11-15
· 809 次阅读

GoogLeNet Inception v1 结构 及 pytorch、tensorflow、keras、paddle实现ImageNet识别

环境

python3.6, keras2.2.4, tensorflow-gpu 1.12.0

代码

# -*- coding: utf-8 -*- # @Time : 2020/2/3 9:56 # @Author : Zhao HL # @File : InceptionV1-keras.py import keras from keras.utils import Sequence from keras.layers import * from keras.models import * from keras.optimizers import * from keras.callbacks import * import numpy as np import pandas as pd from PIL import Image from my_utils import draw_loss_acc, dataInfo_show, dataset_divide # region parameters # region paths Data_path = "./data/" Data_csv_path = "./data/split.txt" Model_path = 'model/' Model_file_tf = "model/InceptionV1_tf.ckpt" Model_file_keras = "model/InceptionV1_keras.h5" Model_file_torch = "model/InceptionV1_torch.pth" Model_file_paddle = "model/InceptionV1_paddle.model" # endregion # region image parameter Img_size = 224 Img_chs = 3 Label_size = 1 Label_class = ['agricultural', 'airplane', 'baseballdiamond', 'beach', 'buildings', 'chaparral', 'denseresidential', 'forest', 'freeway', 'golfcourse', 'harbor', 'intersection', 'mediumresidential', 'mobilehomepark', 'overpass', 'parkinglot', 'river', 'runway', 'sparseresidential', 'storagetanks', 'tenniscourt'] Labels_nums = len(Label_class) # endregion # region net parameter Conv1_kernel_size = 7 Conv1_chs = 64 Conv21_kernel_size = 1 Conv21_chs = 64 Conv2_kernel_size = 3 Conv2_chs = 192 Icp3a_size = (64, 96, 128, 16, 32, 32) Icp3b_size = (128, 128, 192, 32, 96, 64) Icp4a_size = (192, 96, 208, 16, 48, 64) Icp4b_size = (160, 112, 224, 24, 64, 64) Icp4c_size = (128, 128, 256, 24, 64, 64) Icp4d_size = (112, 144, 288, 32, 64, 64) Icp4e_size = (256, 160, 320, 32, 128, 128) Icp5a_size = (256, 160, 320, 32, 128, 128) Icp5b_size = (384, 192, 384, 48, 128, 128) Out_chs1 = 128 Out_chs2 = 1024 # endregion # region hpyerparameter Learning_rate = 1e-3 Batch_size = 2 Buffer_size = 256 Infer_size = 1 Epochs = 5 Train_num = 1470 Train_batch_num = Train_num // Batch_size Val_num = 210 Val_batch_num = Val_num // Batch_size Test_num = 420 Test_batch_num = Test_num // Batch_size # endregion # endregion class MyDataset(Sequence): def __init__(self, root_path, batch_size, files_list=None,shuffle=True): self.shuffle = shuffle self.root_path = root_path self.batch_size = batch_size self.files_list = files_list if files_list else os.listdir(root_path) self.size = len(files_list) self.list_shuffle() def __len__(self): return self.size def __getitem__(self, batch_index): images, labels = [], [] if batch_index >= self.size // self.batch_size: batch_index = batch_index%(self.size // self.batch_size) start_index = batch_index * self.batch_size end_index = (batch_index + 1) * self.batch_size for index in range(start_index, end_index): label_str = os.path.basename(self.files_list[index])[:-6] label = Label_class.index(label_str) img = Image.open(os.path.join(self.root_path, self.files_list[index])) img, label = self.transform(img, label) images.append(img) labels.append(label) images = np.array(images) labels = np.array(labels) return ({'input': images}, {'output': labels,'output1':labels,'output2':labels}) def transform(self, image, label): def Normalize(image, means, stds): for band in range(len(means)): image[:, :, band] = image[:, :, band] / 255.0 image[:, :, band] = (image[:, :, band] - means[band]) / stds[band] return image def ToOnehot(labels): labels = np.eye(Labels_nums)[labels].reshape(Labels_nums) return labels pass image = image.resize((Img_size, Img_size), Image.ANTIALIAS) image = Normalize(np.array(image).astype(np.float), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) label = ToOnehot(label) return (image, label) def list_shuffle(self): if self.shuffle: np.random.shuffle(self.files_list) class InceptionV1: def __init__(self, structShow=False): self.structShow = structShow def InceptionV1_Model(self, input, model_size): con11_chs, con31_chs, con3_chs, con51_chs, con5_chs, pool1_chs = model_size conv11 = Conv2D(con11_chs, 1, padding='SAME', activation='relu', kernel_initializer='he_normal')(input) conv31 = Conv2D(con31_chs, 1, padding='SAME', activation='relu', kernel_initializer='he_normal')(input) conv3 = Conv2D(con3_chs, 3, padding='SAME', activation='relu', kernel_initializer='he_normal')(conv31) conv51 = Conv2D(con51_chs, 1, padding='SAME', activation='relu', kernel_initializer='he_normal')(input) conv5 = Conv2D(con5_chs, 5, padding='SAME', activation='relu', kernel_initializer='he_normal')(conv51) pool1 = MaxPooling2D(pool_size=3, strides=1, padding='SAME')(input) conv1 = Conv2D(pool1_chs, 1, padding='SAME', activation='relu', kernel_initializer='he_normal')(pool1) output = concatenate([conv11, conv3, conv5, conv1], axis=3) return output def InceptionV1_Out(self, input, name=None): pool = AvgPool2D(pool_size=5, strides=3, padding='VALID')(input) conv = Conv2D(Out_chs1, 1, padding='SAME', activation='relu', kernel_initializer='he_normal')(pool) flat = Flatten()(conv) dropout = Dropout(0.3)(flat) output = Dense(Labels_nums,name=name)(dropout) return output def getNet(self): input = Input(shape=(Img_size, Img_size, Img_chs),name='input') # region conv pool conv1 = Conv2D(Conv1_chs, kernel_size=Conv1_kernel_size, padding='SAME', activation='relu', strides=2, kernel_initializer='he_normal')(input) pool1 = MaxPooling2D(pool_size=3, strides=2, padding='SAME')(conv1) conv21 = Conv2D(Conv21_chs, kernel_size=Conv21_kernel_size, padding='SAME', activation='relu', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(Conv2_chs, kernel_size=Conv2_kernel_size, padding='SAME', activation='relu', kernel_initializer='he_normal')(conv21) pool2 = MaxPooling2D(pool_size=3, strides=2, padding='SAME')(conv2) # endregion # region inception3 inception3a = self.InceptionV1_Model(pool2, Icp3a_size) inception3b = self.InceptionV1_Model(inception3a, Icp3b_size) pool3 = MaxPooling2D(pool_size=3, strides=2, padding='SAME')(inception3b) # endregion # region inception3 inception4a = self.InceptionV1_Model(pool3, Icp4a_size) output1 = self.InceptionV1_Out(inception4a, 'output1') inception4b = self.InceptionV1_Model(inception4a, Icp4b_size) inception4c = self.InceptionV1_Model(inception4b, Icp4c_size) inception4d = self.InceptionV1_Model(inception4c, Icp4d_size) output2 = self.InceptionV1_Out(inception4d, 'output2') inception4e = self.InceptionV1_Model(inception4d, Icp4e_size) pool4 = MaxPooling2D(pool_size=3, strides=2, padding='SAME')(inception4e) # endregion # region inception5 inception5a = self.InceptionV1_Model(pool4, Icp5a_size) inception5b = self.InceptionV1_Model(inception5a, Icp5b_size) pool5 = MaxPooling2D(pool_size=7, strides=1, padding='SAME')(inception5b) # endregion # region output flat = Flatten()(pool5) dropout = Dropout(0.4)(flat) output = Dense(Labels_nums,name='output')(dropout) # endregion model = Model(inputs=input, outputs=[output,output1,output2]) model.compile(Adam(lr=Learning_rate), loss='categorical_crossentropy', metrics=['accuracy'], loss_weights=[0.6, 0.2, 0.2] ) if self.structShow: model.summary() return model def train(): df = pd.read_csv(Data_csv_path, header=0, index_col=0) train_list = df[df['split'] == 'train']['filename'].tolist() val_list = df[df['split'] == 'val']['filename'].tolist() train_dataset = MyDataset(Data_path, batch_size=Batch_size, files_list=train_list) val_dataset = MyDataset(Data_path, batch_size=Batch_size, files_list=val_list) net = InceptionV1(structShow=True) model = net.getNet() # if os.path.exists(Model_file_keras): # model = load_model(Model_file_keras) # else: # model = net.get_alexNet() model_checkpoint = ModelCheckpoint(Model_file_keras, monitor='val_loss', save_best_only=True) history = model.fit_generator(train_dataset, steps_per_epoch=train_dataset.size//train_dataset.batch_size, epochs=Epochs, use_multiprocessing=True, validation_data=val_dataset, validation_steps=val_dataset.size//val_dataset.batch_size, shuffle=True, callbacks=[model_checkpoint] ) print(history.history.keys()) train_losses = history.history['loss'] train_accs = history.history['output_acc'] train_accs1 = history.history['output1_acc'] train_accs2 = history.history['output2_acc'] val_losses = history.history['val_loss'] val_accs = history.history['val_output_acc'] val_accs1 = history.history['val_output1_acc'] val_accs2 = history.history['val_output2_acc'] draw_loss_acc(train_losses, train_accs, 'train') draw_loss_acc(train_accs1, train_accs2, 'train') draw_loss_acc(val_losses, val_accs, 'val') draw_loss_acc(val_accs1, val_accs2, 'val') print('best loss %.4f at epoch %d \n' % (max(val_losses), int(np.argmin(np.array(val_losses))))) if __name__ == '__main__': pass # dataset_divide(r'E:\_Python\01_deeplearning\04_GoogLeNet\Inception1\data\split.txt') train()

my_utils.py

# -*- coding: utf-8 -*- # @Time : 2020/1/21 11:39 # @Author : Zhao HL # @File : my_utils.py import sys,os,random import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image def process_show(num, nums, train_acc, train_loss, prefix='', suffix=''): rate = num / nums ratenum = int(round(rate, 2) * 100) bar = '\r%s batch %3d/%d:train accuracy %.4f, train loss %00.4f [%s%s]%.1f%% %s; ' % ( prefix, num, nums, train_acc, train_loss, '#' * (ratenum//2), '_' * (50 - ratenum//2), ratenum, suffix) sys.stdout.write(bar) sys.stdout.flush() if num >= nums: print() def dataInfo_show(data_path,csv_pth,cls_dic_path,shapesShow=True,classesShow=True): cls_dict = get_cls_dic(cls_dic_path) if classesShow: print('\n'+'*'*50) df = pd.read_csv(csv_pth) labels = df['label'].unique() label_cls = {label:cls_dict[label] for label in labels} print(label_cls) cls_count = df['label'].value_counts() cls_count = {cls_dict[k]:v for k,v in cls_count.items()} for k,v in cls_count.items(): print(k,v) if shapesShow: print('\n'+'*'*50) shapes = [] for filename in os.listdir(data_path): img = Image.open(os.path.join(data_path, filename)) img = np.array(img) shapes.append(img.shape) shapes = pd.Series(shapes) print(shapes.value_counts()) def get_cls_dic(cls_dic_path): # 读取类标签字典,只取第一个逗号前的信息 cls_df = pd.read_csv(cls_dic_path) cls_df['cls'] = cls_df['info'].apply(lambda x:x[:9]).tolist() cls_df['label'] = cls_df['info'].apply(lambda x: x[10:]).tolist() cls_df = cls_df.drop(columns=['info','other']) cls_dict = cls_df.set_index('cls').T.to_dict('list') cls_dict = {k:v[0] for k,v in cls_dict.items()} return cls_dict def dataset_divide(csv_pth): cls_df = pd.read_csv(csv_pth, header=0,index_col=0) cls_df.insert(1,'split',None) filenames = list(cls_df['filename']) random.shuffle(filenames) train_num,train_val_num = int(len(filenames)*0.7),int(len(filenames)*0.8) train_names = filenames[:train_num] val_names = filenames[train_num:train_val_num] test_names = filenames[train_val_num:] cls_df.loc[cls_df['filename'].isin(train_names),'split'] = 'train' cls_df.loc[cls_df['filename'].isin(val_names), 'split'] = 'val' cls_df.loc[cls_df['filename'].isin(test_names), 'split'] = 'test' cls_df.to_csv(csv_pth) def draw_loss_acc(loss,acc,type='',save_path=None): assert len(acc) == len(loss) x = [epoch for epoch in range(len(acc))] plt.subplot(2, 1, 1) plt.plot(x, acc, 'o-') plt.title(type+' accuracy vs. epoches') plt.ylabel('accuracy') plt.subplot(2, 1, 2) plt.plot(x, loss, '.-') plt.xlabel(type+' loss vs. epoches') plt.ylabel('loss') plt.show() if save_path: plt.savefig(os.path.join(save_path,type+"_acc_loss.png")) if __name__ == '__main__': pass
作者:GISer_Lin



googlenet keras

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章