python神经网络学习使用Keras进行回归运算

Ebony ·
更新时间:2024-11-10
· 1002 次阅读

目录

学习前言

什么是Keras

Keras中基础的重要函数

1、Sequential

2、Dense

3、model.compile

全部代码

学习前言

看了好多Github,用于保存模型的库都是Keras,我觉得还是好好学习一下的好

什么是Keras

Keras是一个由Python编写的开源人工神经网络库,可以作Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。

Keras相当于比Tensorflow和Theano更高一层的库,其可以以Tensorflow或者Theano为底层框架,以更加简洁、高效的方式添加代码。

在2018年Tensorflow 2.0.0公开后,Keras被正式确立为Tensorflow高阶API。

Keras中基础的重要函数 1、Sequential

Sequential又称为序贯模型。

序贯模型为最简单的线性、从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠。

在利用Keras进行模型构建前,只需要用如下函数建立模型就够了。

model = Sequential()

此时便已经建立了一个按次序的模型,之后在往模型中添加层的时候,就是按照次序添加的。

2、Dense

Dense用于往Sequential中添加全连接层。全连接层示意图如下。(图片源自百度百科)

具体而言,简单的BP神经网络中,输入层到隐含层中间的权值连接,其实与全连接层的意义相同。
在Keras中,如果需要往model中添加全连接层,可使用如下函数。

model.add(Dense(output_dim = 1,input_dim = 1))

此时表示输入维度为1,输出维度也为1。

3、model.compile

model.compile在Keras中的作用主要用于定义loss函数和优化器。

其调用方式如下:

model.compile(loss='mse', optimizer='sgd', metrics=['accuracy'])

其中loss用于定义计算损失的损失函数,其可以选择的内容如下:
1、mse:均方根误差,常用于回归预测。

2、categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)的二值序列,常用于分类。

3、sparse_categorical_crossentrop:如上,但接受稀疏标签。

optimizer用于定义优化器,可以使用默认的,也可以从keras.optimizers导出。

其可以选择的内容可以参照Keras中文文档。上文中选择的是随机梯度下降法sgd。

metrics=[‘accuracy’]常用于分类运算中,本例子中不适用,accuracy代表计算分类精确度。

全部代码

该例子为一元线性回归例子。

import numpy as np from keras.models import Sequential from keras.layers import Dense ## 全连接层 import matplotlib.pyplot as plt # 生成测试数据 X = np.linspace(-1,1,200) np.random.shuffle(X) Y = 0.5*X + 2 + np.random.normal(0,0.05,(200,)) # 划分训练集和测试集 X_train,Y_train = X[:160],Y[:160] X_test,Y_test = X[160:],Y[160:] # start model = Sequential() model.add(Dense(output_dim = 1,input_dim = 1)) # compile model.compile(loss = 'mse',optimizer = 'sgd') # 训练 print("\ntraining") for step in range(2001): cost = model.train_on_batch(X_train,Y_train) if step%100 == 0: print("tarin_cost:",cost) # 测试 print("\nTest") cost = model.evaluate(X_test,Y_test,batch_size=40) W,b = model.layers[0].get_weights() print("Weights",W,"biaxes",b) # 预测结果 Y = model.predict(X_test) plt.scatter(X_test,Y_test) plt.plot(X_test,Y) plt.show()

实现结果为:

tarin_cost: 4.506874 tarin_cost: 0.21098542 tarin_cost: 0.041809298 tarin_cost: 0.013134768 tarin_cost: 0.0055761375 tarin_cost: 0.0035068158 tarin_cost: 0.0029388934 tarin_cost: 0.002783 tarin_cost: 0.0027402083 tarin_cost: 0.002728462 tarin_cost: 0.0027252387 tarin_cost: 0.0027243525 tarin_cost: 0.0027241106 tarin_cost: 0.0027240426 tarin_cost: 0.002724025 tarin_cost: 0.0027240203 tarin_cost: 0.0027240184 tarin_cost: 0.0027240182 tarin_cost: 0.0027240175 tarin_cost: 0.0027240175 tarin_cost: 0.0027240175 Test 40/40 [==============================] - 0s 874us/step Weights [[0.5041559]] biaxes [1.9961643]

以上就是python神经网络学习使用Keras进行回归运算的详细内容,更多关于python神经网络Keras回归运算的资料请关注软件开发网其它相关文章!



学习 回归 python神经网络 keras Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号