对称矩阵及稀疏矩阵的压缩存储
1.稀疏矩阵
对于那些零元素数目远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。
人们无法给出稀疏矩阵的确切定义,一般都只是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素没有分布规律。
实现代码:
//稀疏矩阵及其压缩存储
#pragma once
#include <vector>
#include <iostream>
using namespace std;
template<class T>
struct Triple
{
size_t _r;
size_t _c;
T _value;
Triple(size_t row = 0, size_t col = 0, const T& value = T())
:_r(row)
,_c(col)
,_value(value)
{}
};
template <class T>
class SparseMatrix
{
public:
SparseMatrix()
:_row(0)
,_col(0)
,_illegal(T())
{}
SparseMatrix(T* arr, size_t row, size_t col, const T& illegal)
:_row(row)
,_col(col)
,_illegal(illegal)
{
for(size_t i = 0; i<row; ++i)
{
for(size_t j = 0; j<col; ++j)
{
if(arr[i*col+j] != illegal)
{
Triple<T> t(i,j,arr[i*col+j]);
_matrix.push_back(t);
}
}
}
}
void Display()
{
vector<Triple<T> >::iterator iter;
iter = _matrix.begin();
for(size_t i = 0; i<_row; ++i)
{
for(size_t j = 0; j<_col; ++j)
{
if(iter!=_matrix.end()
&&iter->_r == i
&&iter->_c == j)
{
cout << iter->_value <<" ";
++iter;
}
else
{
cout << _illegal <<" ";
}
}
cout << endl;
}
cout << endl;
}
//普通转置(行优先存储)
//列变行,从0列开始,将列数据一个一个放进转置矩阵
SparseMatrix<T> Transpose()
{
SparseMatrix<T> tm;
tm._row = _col;
tm._col = _row;
tm._illegal = _illegal;
tm._matrix.reserve(_matrix.size());
for(size_t i = 0; i<_col; ++i)
{
size_t index = 0;
while(index < _matrix.size())
{
if(_matrix[index]._c == i)
{
Triple<T> t(_matrix[index]._c, _matrix[index]._r, _matrix[index]._value);
tm._matrix.push_back(t);
}
++index;
}
}
return tm;
}
SparseMatrix<T> FastTranspose()
{
SparseMatrix<T> tm;
tm._row = _col;
tm._col = _row;
tm._illegal = _illegal;
tm._matrix.resize(_matrix.size());
int* count = new int[_col];//记录每行的元素个数
memset(count, 0, sizeof(int)*_col);
int* start = new int[_col];//转置矩阵中元素的位置
start[0] = 0;
size_t index = 0;
while(index < _matrix.size())
{
count[_matrix[index]._c]++;
++index;
}
for(size_t i=1; i<_col; ++i)
{
start[i] = start[i-1] + count[i-1];
}
index = 0;
while(index < _matrix.size())
{
Triple<T> t(_matrix[index]._c, _matrix[index]._r, _matrix[index]._value);
tm._matrix[start[_matrix[index]._c]++] = t; //核心代码
++index;
}
delete[] count;
delete[] start;
return tm;
}
protected:
vector<Triple<T> > _matrix;
size_t _row;
size_t _col;
T _illegal;
};
2.对称矩阵
实现代码:
//对称矩阵及其压缩存储
#pragma once
#include <iostream>
using namespace std;
template <class T>
class SymmetricMatrix
{
public:
SymmetricMatrix(T* arr, size_t n)
:_n(n)
,_matrix(new T[n*(n+1)/2])
{
size_t index = 0;
for(size_t i = 0; i<n; ++i)
{
for(size_t j=0; j<n;++j)
{
if(i >= j)
{
_matrix[index] = arr[i*n+j];
++index;
}
else
{
continue;
}
}
}
}
void Display()
{
for(size_t i =0; i < _n; ++i)
{
for(size_t j = 0; j < _n; ++j)
{
/* if(i<j)
{
swap(i,j);
cout<<_matrix[i*(i+1)/2+j]<<" ";
swap(i,j);
}
else
cout<<_matrix[i*(i+1)/2+j]<<" ";
*/
cout << Access(i,j) << " ";
}
cout << endl;
}
cout << endl;
}
T& Access(size_t row, size_t col)
{
if(row<col)
{
swap(row, col);
}
return _matrix[row*(row+1)/2+col];
}
~SymmetricMatrix()
{
if(_matrix != NULL)
{
delete[] _matrix;
_matrix = NULL;
}
}
protected:
T* _matrix;
size_t _n; //对称矩阵的行列大小
};
以上就是C++ 数据结构实现稀疏矩阵与对称矩阵,如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
您可能感兴趣的文章:C++ 实现稀疏矩阵的压缩存储的实例C++实现稀疏矩阵的压缩存储实例Dijkstra算法最短路径的C++实现与输出路径C++项目求Fibonacci数列的参考解答C++实践IP地址类项目参考C++实践数组作数据成员的参考一张图总结C++中关于指针的那些事C++实践数组类运算的实现参考C++实践Time类中的运算符重载参考方法C++稀疏矩阵的各种基本运算并实现加法乘法