函数API实现widedeep模型

Paloma ·
更新时间:2024-11-10
· 553 次阅读

函数API实现wide&deep模型

整个的模型搭建在以下代码中显示并标注了注释。

import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline #为了能在notebook中显示图像 import numpy as np import sklearn import pandas as pd import os import sys import time import tensorflow as tf from tensorflow import keras from sklearn.datasets import fetch_california_housing #从sklearn中引用加州的房价数据 housing = fetch_california_housing() print(housing.DESCR) print(housing.data.shape) print(housing.target.shape) #引用train_test_split对数据集进行拆分 # test_size 控制切分比例,默认切分比例3:1 from sklearn.model_selection import train_test_split #拆分数据集,加载数据集后返回训练集以及测试集 x_train_all, x_test, y_train_all, y_test = train_test_split(housing.data, housing.target, random_state = 1) #将训练集进行一次拆分为验证集和测试集 x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all, random_state=2) print(x_train.shape, y_train.shape) print(x_valid.shape, y_valid.shape) print(x_test.shape, y_test.shape) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() #对数据进行归一化处理 #由于transform处理处理数据时二维数组,所以要将数据转化一下 #x_train: [none, 28, 28] -> [none, 784] #对于使用fit_transform 和transform 请参考我的TensorFlow中的博客 x_train_scaled = scaler.fit_transform(x_train) x_valid_scaled = scaler.transform(x_valid) x_test_scaled = scaler.transform(x_test) #注意在归一化数据后,之后使用的数据要使用新的归一化数据

搭建wide&deep模型

#函数式API实现wide&deep模型 #输入 input = keras.layers.Input(shape = x_train.shape[1:]) #deep层构建 hidden1 = keras.layers.Dense(30, activation='relu')(input) hidden2 = keras.layers.Dense(30, activation= 'relu')(hidden1) #拼接wide&deep结果 concat = keras.layers.concatenate([input, hidden2]) #输出结果 output = keras.layers.Dense(1)(concat) #固化模型(Model) model = keras.models.Model(inputs = [input], outputs = [output]) model.summary() #编译compile model.compile(loss = "mean_squared_error", #损失函数:使用均方根误差 optimizer = "adam", #优化函数 ) #使用回调函数 callbacks = [ keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3), ] #训练模型会,返回一个结果保存在history中 history = model.fit(x_train_scaled, y_train, epochs=50, validation_data=(x_valid_scaled, y_valid), callbacks=callbacks) #使用回调函数 def plot_learning_curves(history): pd.DataFrame(history.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) plt.show plot_learning_curves(history) model.evaluate(x_test_scaled, y_test)
作者:一只工程狮



deep api

需要 登录 后方可回复, 如果你还没有账号请 注册新账号