NCCL深度学习之初始化及ncclUniqueId的产生源码解析

Rose ·
更新时间:2024-11-14
· 887 次阅读

目录

作者|KIDGINBROOK

更新|潘丽晨

NCCL是英伟达开源的GPU通信库,支持集合通信和点对点通信。

看下官方给的一个demo:

#include <stdio.h> #include "cuda_runtime.h" #include "nccl.h" #include "mpi.h" #include <unistd.h> #include <stdint.h> #define MPICHECK(cmd) do { \ int e = cmd; \ if( e != MPI_SUCCESS ) { \ printf("Failed: MPI error %s:%d '%d'\n", \ __FILE__,__LINE__, e); \ exit(EXIT_FAILURE); \ } \ } while(0) #define CUDACHECK(cmd) do { \ cudaError_t e = cmd; \ if( e != cudaSuccess ) { \ printf("Failed: Cuda error %s:%d '%s'\n", \ __FILE__,__LINE__,cudaGetErrorString(e)); \ exit(EXIT_FAILURE); \ } \ } while(0) #define NCCLCHECK(cmd) do { \ ncclResult_t r = cmd; \ if (r!= ncclSuccess) { \ printf("Failed, NCCL error %s:%d '%s'\n", \ __FILE__,__LINE__,ncclGetErrorString(r)); \ exit(EXIT_FAILURE); \ } \ } while(0) static uint64_t getHostHash(const char* string) { // Based on DJB2a, result = result * 33 ^ char uint64_t result = 5381; for (int c = 0; string[c] != '\0'; c++){ result = ((result << 5) + result) ^ string[c]; } return result; } static void getHostName(char* hostname, int maxlen) { gethostname(hostname, maxlen); for (int i=0; i< maxlen; i++) { if (hostname[i] == '.') { hostname[i] = '\0'; return; } } } int main(int argc, char* argv[]) { int size = 32*1024*1024; int myRank, nRanks, localRank = 0; //initializing MPI MPICHECK(MPI_Init(&argc, &argv)); MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank)); MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks)); //calculating localRank which is used in selecting a GPU uint64_t hostHashs[nRanks]; char hostname[1024]; getHostName(hostname, 1024); hostHashs[myRank] = getHostHash(hostname); MPICHECK(MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD)); for (int p=0; p<nRanks; p++) { if (p == myRank) break; if (hostHashs[p] == hostHashs[myRank]) localRank++; } //each process is using two GPUs int nDev = 2; float** sendbuff = (float**)malloc(nDev * sizeof(float*)); float** recvbuff = (float**)malloc(nDev * sizeof(float*)); cudaStream_t* s = (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev); //picking GPUs based on localRank for (int i = 0; i < nDev; ++i) { CUDACHECK(cudaSetDevice(localRank*nDev + i)); CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float))); CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float))); CUDACHECK(cudaMemset(sendbuff[i], 1, size * sizeof(float))); CUDACHECK(cudaMemset(recvbuff[i], 0, size * sizeof(float))); CUDACHECK(cudaStreamCreate(s+i)); } ncclUniqueId id; ncclComm_t comms[nDev]; //generating NCCL unique ID at one process and broadcasting it to all if (myRank == 0) ncclGetUniqueId(&id); MPICHECK(MPI_Bcast((void *)&id, sizeof(id), MPI_BYTE, 0, MPI_COMM_WORLD)); //initializing NCCL, group API is required around ncclCommInitRank as it is //called across multiple GPUs in each thread/process NCCLCHECK(ncclGroupStart()); for (int i=0; i<nDev; i++) { CUDACHECK(cudaSetDevice(localRank*nDev + i)); NCCLCHECK(ncclCommInitRank(comms+i, nRanks*nDev, id, myRank*nDev + i)); } NCCLCHECK(ncclGroupEnd()); //calling NCCL communication API. Group API is required when using //multiple devices per thread/process NCCLCHECK(ncclGroupStart()); for (int i=0; i<nDev; i++) NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, ncclFloat, ncclSum, comms[i], s[i])); NCCLCHECK(ncclGroupEnd()); //synchronizing on CUDA stream to complete NCCL communication for (int i=0; i<nDev; i++) CUDACHECK(cudaStreamSynchronize(s[i])); //freeing device memory for (int i=0; i<nDev; i++) { CUDACHECK(cudaFree(sendbuff[i])); CUDACHECK(cudaFree(recvbuff[i])); } //finalizing NCCL for (int i=0; i<nDev; i++) { ncclCommDestroy(comms[i]); } //finalizing MPI MPICHECK(MPI_Finalize()); printf("[MPI Rank %d] Success \n", myRank); return 0; }

在上边的示例中,rank0会执行ncclGetUniqueId获取Id,然后通过mpi广播给其他rank,接下来看下UniqueId是怎么产生的。

ncclResult_t ncclGetUniqueId(ncclUniqueId* out) { NCCLCHECK(ncclInit()); NCCLCHECK(PtrCheck(out, "GetUniqueId", "out")); return bootstrapGetUniqueId(out); }

然后看下ncclInit。

首先执行initEnv,设置环境变量。

然后执行initNet,用来初始化nccl所需要的网络,包括两个,一个是bootstrap网络,另外一个是数据通信网络,bootstrap网络主要用于初始化时交换一些简单的信息,比如每个机器的ip端口,由于数据量很小,而且主要是在初始化阶段执行一次,因此bootstrap使用的是tcp;而通信网络是用于实际数据的传输,因此会优先使用rdma(支持gdr的话会优先使用gdr)。

ncclResult_t initNet() { // Always initialize bootstrap network NCCLCHECK(bootstrapNetInit()); NCCLCHECK(initNetPlugin(&ncclNet, &ncclCollNet)); if (ncclNet != NULL) return ncclSuccess; if (initNet(&ncclNetIb) == ncclSuccess) { ncclNet = &ncclNetIb; } else { NCCLCHECK(initNet(&ncclNetSocket)); ncclNet = &ncclNetSocket; } return ncclSuccess; }

bootstrapNetInit就是bootstrap网络的初始化,主要就是通过findInterfaces遍历机器上所有的网卡信息,通过prefixList匹配选择使用哪些网卡,将可用网卡的信息保存下来,将ifa_name保存到全局的bootstrapNetIfNames,ip地址保存到全局bootstrapNetIfAddrs,默认除了docker和lo其他的网卡都可以使用。

例如在测试机器上有三张网卡,分别是xgbe0、xgbe1、xgbe2,那么就会把这三个ifaname和对应的ip地址保存下来,另外nccl提供了环境变量NCCL_SOCKET_IFNAME可以用来指定想用的网卡名,例如通过export NCCL_SOCKET_IFNAME=xgbe0来指定使用xgbe0,其实就是通过prefixList来匹配做到的。

static int findInterfaces(const char* prefixList, char* names, union socketAddress *addrs, int sock_family, int maxIfNameSize, int maxIfs) { struct netIf userIfs[MAX_IFS]; bool searchNot = prefixList && prefixList[0] == '^'; if (searchNot) prefixList++; bool searchExact = prefixList && prefixList[0] == '='; if (searchExact) prefixList++; int nUserIfs = parseStringList(prefixList, userIfs, MAX_IFS); int found = 0; struct ifaddrs *interfaces, *interface; getifaddrs(&interfaces); for (interface = interfaces; interface && found < maxIfs; interface = interface->ifa_next) { if (interface->ifa_addr == NULL) continue; int family = interface->ifa_addr->sa_family; if (family != AF_INET && family != AF_INET6) continue; if (sock_family != -1 && family != sock_family) continue; if (family == AF_INET6) { struct sockaddr_in6* sa = (struct sockaddr_in6*)(interface->ifa_addr); if (IN6_IS_ADDR_LOOPBACK(&sa->sin6_addr)) continue; } if (!(matchIfList(interface->ifa_name, -1, userIfs, nUserIfs, searchExact) ^ searchNot)) { continue; } bool duplicate = false; for (int i = 0; i < found; i++) { if (strcmp(interface->ifa_name, names+i*maxIfNameSize) == 0) { duplicate = true; break; } } if (!duplicate) { strncpy(names+found*maxIfNameSize, interface->ifa_name, maxIfNameSize); int salen = (family == AF_INET) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); memcpy(addrs+found, interface->ifa_addr, salen); found++; } } freeifaddrs(interfaces); return found; }

开始初始化通信网络。

ncclNet_t结构体是一系列的函数指针,比如初始化,发送,接收等;socket,IB等通信方式都实现了自己的ncclNet_t,如ncclNetSocket,ncclNetIb,初始化通信网络的过程就是依次看哪个通信模式可用,然后赋值给全局的ncclNet。

首先执行initNetPlugin,查看是否有libnccl-net.so,测试环境没有这个so,所以直接返回。

然后尝试使用IB网络:

首先执行ncclNetIb的init函数,就是ncclIbInit。

ncclResult_t ncclIbInit(ncclDebugLogger_t logFunction) { static int shownIbHcaEnv = 0; if(wrap_ibv_symbols() != ncclSuccess) { return ncclInternalError; } if (ncclParamIbDisable()) return ncclInternalError; if (ncclNIbDevs == -1) { pthread_mutex_lock(&ncclIbLock); wrap_ibv_fork_init(); if (ncclNIbDevs == -1) { ncclNIbDevs = 0; if (findInterfaces(ncclIbIfName, &ncclIbIfAddr, MAX_IF_NAME_SIZE, 1) != 1) { WARN("NET/IB : No IP interface found."); return ncclInternalError; } // Detect IB cards int nIbDevs; struct ibv_device** devices; // Check if user defined which IB device:port to use char* userIbEnv = getenv("NCCL_IB_HCA"); if (userIbEnv != NULL && shownIbHcaEnv++ == 0) INFO(NCCL_NET|NCCL_ENV, "NCCL_IB_HCA set to %s", userIbEnv); struct netIf userIfs[MAX_IB_DEVS]; bool searchNot = userIbEnv && userIbEnv[0] == '^'; if (searchNot) userIbEnv++; bool searchExact = userIbEnv && userIbEnv[0] == '='; if (searchExact) userIbEnv++; int nUserIfs = parseStringList(userIbEnv, userIfs, MAX_IB_DEVS); if (ncclSuccess != wrap_ibv_get_device_list(&devices, &nIbDevs)) return ncclInternalError; for (int d=0; d<nIbDevs && ncclNIbDevs<MAX_IB_DEVS; d++) { struct ibv_context * context; if (ncclSuccess != wrap_ibv_open_device(&context, devices[d]) || context == NULL) { WARN("NET/IB : Unable to open device %s", devices[d]->name); continue; } int nPorts = 0; struct ibv_device_attr devAttr; memset(&devAttr, 0, sizeof(devAttr)); if (ncclSuccess != wrap_ibv_query_device(context, &devAttr)) { WARN("NET/IB : Unable to query device %s", devices[d]->name); if (ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; } continue; } for (int port = 1; port <= devAttr.phys_port_cnt; port++) { struct ibv_port_attr portAttr; if (ncclSuccess != wrap_ibv_query_port(context, port, &portAttr)) { WARN("NET/IB : Unable to query port %d", port); continue; } if (portAttr.state != IBV_PORT_ACTIVE) continue; if (portAttr.link_layer != IBV_LINK_LAYER_INFINIBAND && portAttr.link_layer != IBV_LINK_LAYER_ETHERNET) continue; // check against user specified HCAs/ports if (! (matchIfList(devices[d]->name, port, userIfs, nUserIfs, searchExact) ^ searchNot)) { continue; } TRACE(NCCL_INIT|NCCL_NET,"NET/IB: [%d] %s:%d/%s ", d, devices[d]->name, port, portAttr.link_layer == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE"); ncclIbDevs[ncclNIbDevs].device = d; ncclIbDevs[ncclNIbDevs].guid = devAttr.sys_image_guid; ncclIbDevs[ncclNIbDevs].port = port; ncclIbDevs[ncclNIbDevs].link = portAttr.link_layer; ncclIbDevs[ncclNIbDevs].speed = ncclIbSpeed(portAttr.active_speed) * ncclIbWidth(portAttr.active_width); ncclIbDevs[ncclNIbDevs].context = context; strncpy(ncclIbDevs[ncclNIbDevs].devName, devices[d]->name, MAXNAMESIZE); NCCLCHECK(ncclIbGetPciPath(ncclIbDevs[ncclNIbDevs].devName, &ncclIbDevs[ncclNIbDevs].pciPath, &ncclIbDevs[ncclNIbDevs].realPort)); ncclIbDevs[ncclNIbDevs].maxQp = devAttr.max_qp; ncclNIbDevs++; nPorts++; pthread_create(&ncclIbAsyncThread, NULL, ncclIbAsyncThreadMain, context); } if (nPorts == 0 && ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; } } if (nIbDevs && (ncclSuccess != wrap_ibv_free_device_list(devices))) { return ncclInternalError; }; } if (ncclNIbDevs == 0) { INFO(NCCL_INIT|NCCL_NET, "NET/IB : No device found."); } else { char line[1024]; line[0] = '\0'; for (int d=0; d<ncclNIbDevs; d++) { snprintf(line+strlen(line), 1023-strlen(line), " [%d]%s:%d/%s", d, ncclIbDevs[d].devName, ncclIbDevs[d].port, ncclIbDevs[d].link == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE"); } line[1023] = '\0'; char addrline[1024]; INFO(NCCL_INIT|NCCL_NET, "NET/IB : Using%s ; OOB %s:%s", line, ncclIbIfName, socketToString(&ncclIbIfAddr.sa, addrline)); } pthread_mutex_unlock(&ncclIbLock); } return ncclSuccess; }

首先第三行通过wrap_ibv_symbols加载动态库libibverbs.so,然后获取动态库的各个函数。

然后通过wrap_ibv_fork_init避免fork引起rdma网卡读写出错。

后面会讲到ib网络也会用到socket进行带外网络的传输,所以这里也通过findInterfaces获取一个可用的网卡保存到ncclIbIfAddr。

通过ibv_get_device_list获取所有rdma设备到devices中,遍历devices的每个device,因为每个HCA可能有多个物理port,所以对每个device遍历每一个物理port,获取每个port的信息。

然后将相关信息保存到全局的ncclIbDevs中,比如是哪个device的哪个port,使用的是IB还是ROCE,device的pci路径,maxqp,device的name等,注意这里也有类似bootstrap网络NCCL_SOCKET_IFNAME的环境变量,叫NCCL_IB_HCA,可以指定使用哪个IB HCA。

到这里整个初始化的过程就完成了,一句话总结就是,获取了当前机器上所有可用的IB网卡和普通以太网卡之后保存下来。

然后开始生成UniqueId。

ncclResult_t bootstrapCreateRoot(ncclUniqueId* id, bool idFromEnv) { ncclNetHandle_t* netHandle = (ncclNetHandle_t*) id; void* listenComm; NCCLCHECK(bootstrapNetListen(idFromEnv ? dontCareIf : 0, netHandle, &listenComm)); pthread_t thread; pthread_create(&thread, NULL, bootstrapRoot, listenComm); return ncclSuccess; }

ncclNetHandle_t也是一个字符数组,然后执行bootstrapNetListen。

static ncclResult_t bootstrapNetListen(int dev, ncclNetHandle_t* netHandle, void** listenComm) { union socketAddress* connectAddr = (union socketAddress*) netHandle; static_assert(sizeof(union socketAddress) < NCCL_NET_HANDLE_MAXSIZE, "union socketAddress size is too large"); // if dev >= 0, listen based on dev if (dev >= 0) { NCCLCHECK(bootstrapNetGetSocketAddr(dev, connectAddr)); } else if (dev == findSubnetIf) { ... } // Otherwise, handle stores a local address struct bootstrapNetComm* comm; NCCLCHECK(bootstrapNetNewComm(&comm)); NCCLCHECK(createListenSocket(&comm->fd, connectAddr)); *listenComm = comm; return ncclSuccess; }

依次看下这三个函数,通过bootstrapNetGetSocketAddr获取一个可用的ip地址。

static ncclResult_t bootstrapNetGetSocketAddr(int dev, union socketAddress* addr) { if (dev >= bootstrapNetIfs) return ncclInternalError; memcpy(addr, bootstrapNetIfAddrs+dev, sizeof(*addr)); return ncclSuccess; }

此时dev是0, bootstrapNetIfs是初始化bootstrap网络的时候一共找到了几个可用的网卡,这里就是获取了第0个可用的ip地址。

然后通过bootstrapNetNewComm创建bootstrapNetComm,bootstrapNetComm其实就是fd,bootstrapNetNewComm其实就是new了一个bootstrapNetComm。

struct bootstrapNetComm { int fd; };

通过createListenSocket启动socker server。

static ncclResult_t createListenSocket(int *fd, union socketAddress *localAddr) { /* IPv4/IPv6 support */ int family = localAddr->sa.sa_family; int salen = (family == AF_INET) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); /* Create socket and bind it to a port */ int sockfd = socket(family, SOCK_STREAM, 0); if (sockfd == -1) { WARN("Net : Socket creation failed : %s", strerror(errno)); return ncclSystemError; } if (socketToPort(&localAddr->sa)) { // Port is forced by env. Make sure we get the port. int opt = 1; #if defined(SO_REUSEPORT) SYSCHECK(setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt)), "setsockopt"); #else SYSCHECK(setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)), "setsockopt"); #endif } // localAddr port should be 0 (Any port) SYSCHECK(bind(sockfd, &localAddr->sa, salen), "bind"); /* Get the assigned Port */ socklen_t size = salen; SYSCHECK(getsockname(sockfd, &localAddr->sa, &size), "getsockname"); #ifdef ENABLE_TRACE char line[1024]; TRACE(NCCL_INIT|NCCL_NET,"Listening on socket %s", socketToString(&localAddr->sa, line)); #endif /* Put the socket in listen mode * NB: The backlog will be silently truncated to the value in /proc/sys/net/core/somaxconn */ SYSCHECK(listen(sockfd, 16384), "listen"); *fd = sockfd; return ncclSuccess; }

创建监听fd,ip由localaddr指定,初始端口为0,bind时随机找一个可用端口,并通过getsockname(sockfd, &localAddr->sa, &size)将ip端口写回到localaddr,这里localaddr就是UniqueId。

到这里UniqueId也就产生了,其实就是当前机器的ip和port。

欢迎 Star、试用 OneFlow 最新版本:github.com/Oneflow-Inc…

以上就是NCCL源码解析之初始化及ncclUniqueId的产生详解的详细内容,更多关于NCCL初始化ncclUniqueId产生的资料请关注软件开发网其它相关文章!



学习 源码 初始化

需要 登录 后方可回复, 如果你还没有账号请 注册新账号