本文实例讲述了PHP实现的迪科斯彻(Dijkstra)最短路径算法。分享给大家供大家参考,具体如下:
一、待解决问题
单源最短路径问题,在给定有向图中求一个顶点(单源顶点)到其他所有顶点的最短路径问题。在下图中,每条边上有一个权值,希望求解A到所有其他顶点(B/C/D/E/F/G)的最短路径。
二、问题分析(最短路径的子结构同样最优性)
如果P(A,G)是从顶点A到G的最短路径,假设D和F是这条路径上的中间点,那么P(D,F)一定时从D到F的最短路径。如果P(D,F)不是D到F的最短路径,那必然存在某一个节点M的另一条D到F的路径可以使P(A,B...M...F,G)比P(A,G)小,自相矛盾。
有了这样的性质,我们可以了解Dijkstra算法。
三、Dijkstra算法
Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),又称为单源最短路径算法,所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题。 问题描述为设G=(V,E)是一个有向图,V表示顶点,E表示边。它的每一条边(i,j)属于E,都有一个非负权W(I,j),在G中指定一个结点v0,要求把从v0到G的每一个接vj(vj属于V)的最短有向路径找出来(或者指出不存在)。 Dijstra算法是运用贪心的策略,从源点开始,不断地通过相联通的点找出到其他点的最短距离。
Dijkstra的贪心应用在他利用(二)中的性质,不断地选取“最近”的节点并试探每个节点的所有可能存在链接,以起始点为中心向外层层扩展,直到扩展到终点为止。对于源点A,逐步扩展,根据dist[j]=min{dist[j],dist[i]+matrix[i][j]}更新与i直接相邻的顶点信息。
算法描述
1)算法思想:
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中与k相邻的各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上k与u边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
四、算法PHP实现
<?php
class Dijkstra
{
private $G;
public function __construct()
{
//有向图存储
$this->G = array(
array(0,1,2,0,0,0,0),
array(0,0,0,1,2,0,0),
array(0,0,0,0,0,2,0),
array(0,0,0,0,0,1,3),
array(0,0,0,0,0,0,3),
array(0,0,0,0,0,0,1),
array(0,0,0,0,0,0,0),
);
}
public function calculate()
{
// 存储已经选择节点和剩余节点
$U = array(0);
$V = array(1,2,3,4,5,6);
// 存储路径上节点距离源点的最小距离
$d = array();
//初始化图中节点与源点0的最小距离
for($i=1;$i<7;$i++)
{
if($this->G[0][$i]>0)
{
$d[$i] = $this->G[0][$i];
}
else
{
$d[$i] = 1000000;
}
}
// n-1次循环完成转移节点任务
for($l=0;$l<6;$l++)
{
// 查找剩余节点中距离源点最近的节点v
$current_min = 100000;
$current_min_v = 0;
foreach($V as $k=>$v)
{
if($d[$v] < $current_min)
{
$current_min = $d[$v];
$current_min_v = $v;
}
}
//从V中更新顶点到U中
array_push($U,$current_min_v);
array_splice($V,array_search($current_min_v,$V),1);
//更新
foreach($V as $k=>$u)
{
if($this->G[$current_min_v][$u]!=0&&$d[$u]>$d[$current_min_v]+$this->G[$current_min_v][$u])
{
$d[$u] = $d[$current_min_v]+$this->G[$current_min_v][$u];
}
}
}
foreach($d as $k => $u)
{
echo $k.'=>'.$u.'<br>';
}
}
}
?>
调用类:
$D = new Dijkstra;
$D->calculate();
执行结果:
1=>1
2=>2
3=>2
4=>3
5=>3
6=>4
更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《PHP基本语法入门教程》、《php面向对象程序设计入门教程》、《php字符串(string)用法总结》及《php查找技巧与方法总结》
希望本文所述对大家PHP程序设计有所帮助。
您可能感兴趣的文章:PHP机器学习库php-ml的简单测试和使用方法PHP实现图的邻接矩阵表示及几种简单遍历算法分析PHP对称加密算法(DES/AES)类的实现代码PHP基于回溯算法解决n皇后问题的方法示例php实现的生成迷宫与迷宫寻址算法完整实例PHP实现的贪婪算法实例利用PHP实现开心消消乐的算法示例PHP使用栈解决约瑟夫环问题算法示例PHP基于递归实现的约瑟夫环算法示例PHP实现机器学习之朴素贝叶斯算法详解