因为工作中会经常遇到不同采样率的声音文件的问题,特意写了一下重采样的程序。
原理就是把采样点转换到时间刻度之后再进行插值,经过测试,是没有问题的。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 17-7-21 下午2:32
# @Author : Lei.Jinggui
# @Site : http://blog.csdn.net/lccever
# @File : Resample.py
# @Software: PyCharm Community Edition
# @contact: lccever@126.com
import numpy as np
def Resample(input_signal,src_fs,tar_fs):
'''
:param input_signal:输入信号
:param src_fs:输入信号采样率
:param tar_fs:输出信号采样率
:return:输出信号
'''
dtype = input_signal.dtype
audio_len = len(input_signal)
audio_time_max = 1.0*(audio_len-1) / src_fs
src_time = 1.0 * np.linspace(0,audio_len,audio_len) / src_fs
tar_time = 1.0 * np.linspace(0,np.int(audio_time_max*tar_fs),np.int(audio_time_max*tar_fs)) / tar_fs
output_signal = np.interp(tar_time,src_time,input_signal).astype(dtype)
return output_signal
if __name__ == '__main__':
import wave
import pyaudio
def playSound(audio_data_short, framerate=16000, channels=1):
preply = pyaudio.PyAudio()
# 播放声音
streamreply = preply.open(format=pyaudio.paInt16,
channels=channels,
rate=framerate,
output=True)
data = audio_data_short.tostring()
streamreply.write(data)
streamreply.close()
preply.terminate()
wave_file = 'test.wav'
audio_file = wave.open(wave_file, 'rb')
audio_data = audio_file.readframes(audio_file.getnframes())
audio_data_short = np.fromstring(audio_data, np.short)
src_fs = audio_file.getframerate()
src_chanels = audio_file.getnchannels()
if src_chanels > 1:
audio_data_short = audio_data_short[::src_chanels]
tar_fs = np.int(src_fs * 0.5)
playSound(audio_data_short,framerate=src_fs)
audio_data_short0 = Resample(audio_data_short,src_fs,tar_fs)
playSound(audio_data_short0,framerate=tar_fs)
补充知识:Python 多线程的退出/停止的一种是实现思路
在使用多线程的过程中,我们知道,python的线程是没有stop/terminate方法的,也就是说它被启动后,你无法再主动去退出它,除非主进程退出了,注意,是主进程,不是线程的父进程.
一个比较合理的方式就是把原因需要放到threading.Thread的target中的线程函数,改写到一个继承类中,下面是一个实现例子
import threading
import time
import os
# 原本需要用来启动的无线循环的函数
def print_thread():
pid = os.getpid()
counts = 0
while True:
print(f'threading pid: {pid} ran: {counts:04d} s')
counts += 1
time.sleep(1)
# 把函数放到改写到类的run方法中,便可以通过调用类方法,实现线程的终止
class StoppableThread(threading.Thread):
def __init__(self, daemon=None):
super(StoppableThread, self).__init__(daemon=daemon)
self.__is_running = True
self.daemon = daemon
def terminate(self):
self.__is_running = False
def run(self):
pid = os.getpid()
counts = 0
while self.__is_running:
print(f'threading running: {pid} ran: {counts:04d} s')
counts += 1
time.sleep(1)
def call_thread():
thread = StoppableThread()
thread.daemon = True
thread.start()
pid = os.getpid()
counts = 0
for i in range(5):
print(f'0 call threading pid: {pid} ran: {counts:04d} s')
counts += 2
time.sleep(2)
# 主动把线程退出
thread.terminate()
if __name__ == '__main__':
call_thread()
print(f'==========call_thread finish===========')
counts = 0
for i in range(5):
counts += 1
time.sleep(1)
print(f'main thread:{counts:04d} s')
以上这篇基于Python 的语音重采样函数解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。
您可能感兴趣的文章:python中resample函数实现重采样和降采样代码Python基于opencv的图像压缩算法实例分析使用python实现语音文件的特征提取方法Python实现语音识别和语音合成功能