python 实现12bit灰度图像映射到8bit显示的方法

Vesta ·
更新时间:2024-09-20
· 651 次阅读

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。

技术问题

1、显示器往往只有 8-bit, 而数据有 12- 至 16-bits。
2、如果将数据的 min 和 max 间 (dynamic range) 的之间转换到 8-bit 0-255 去,过程是个有损转换, 而且出来的图像往往突出的是些噪音。

算法分析

12-bit 到 8-bit 直接转换:

computeMinMax(pixel_val, min, max); // 先算图像的最大和最小值 for (i = 0; i < nNumPixels; i++) disp_pixel_val[i] = (pixel_val[i] - min)*255.0/(double)(max-min);

这个算法必须有,对不少种类的图像是很有效的:如 8-bit 图像,MRI, ECT, CR 等等。

python实现

def matrix2uint8(matrix): ''' matrix must be a numpy array NXN Returns uint8 version ''' m_min= np.min(matrix) m_max= np.max(matrix) matrix = matrix-m_min return(np.array(np.rint( (matrix-m_min)/float(m_max-m_min) * 255.0),dtype=np.uint8)) #np.rint, Round elements of the array to the nearest integer. def preprocess(img, crop=True, resize=True, dsize=(224, 224)): if img.dtype == np.uint8: img = img / 255.0 if crop: short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) crop_img = img[yy: yy + short_edge, xx: xx + short_edge] else: crop_img = img if resize: norm_img = imresize(crop_img, dsize, preserve_range=True) else: norm_img = crop_img return (norm_img).astype(np.float32) def deprocess(img): return np.clip(img * 255, 0, 255).astype(np.uint8) 您可能感兴趣的文章:python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结python实现彩色图转换成灰度图Python cv2 图像自适应灰度直方图均衡化处理方法对python cv2批量灰度图片并保存的实例讲解python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别Python读取MRI并显示为灰度图像实例代码Python 将RGB图像转换为Pytho灰度图像的实例Python图像灰度变换及图像数组操作



映射 方法 bit Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章