TensorFlow实现保存训练模型为pd文件并恢复

Fiona ·
更新时间:2024-11-10
· 979 次阅读

TensorFlow保存模型代码

import tensorflow as tf from tensorflow.python.framework import graph_util var1 = tf.Variable(1.0, dtype=tf.float32, name='v1') var2 = tf.Variable(2.0, dtype=tf.float32, name='v2') var3 = tf.Variable(2.0, dtype=tf.float32, name='v3') x = tf.placeholder(dtype=tf.float32, shape=None, name='x') x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2') addop = tf.add(x, x2, name='add') addop2 = tf.add(var1, var2, name='add2') addop3 = tf.add(var3, var2, name='add3') initop = tf.global_variables_initializer() model_path = './Test/model.pb' with tf.Session() as sess: sess.run(initop) print(sess.run(addop, feed_dict={x: 12, x2: 23})) output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3']) # 将计算图写入到模型文件中 model_f = tf.gfile.FastGFile(model_path, mode="wb") model_f.write(output_graph_def.SerializeToString())

读取模型代码

import tensorflow as tf with tf.Session() as sess: model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb') graph_def = tf.GraphDef() graph_def.ParseFromString(model_f.read()) c = tf.import_graph_def(graph_def, return_elements=["add2:0"]) c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"]) x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"]) print(sess.run(c)) print(sess.run(c2)) print(sess.run(c3, feed_dict={x: 23, x2: 2}))

以上这篇TensorFlow实现保存训练模型为pd文件并恢复就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

您可能感兴趣的文章:Tensorflow训练MNIST手写数字识别模型tensorflow实现训练变量checkpoint的保存与读取Tensorflow训练模型越来越慢的2种解决方案解决TensorFlow训练内存不断增长,进程被杀死问题tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式tensorflow模型继续训练 fineturn实例tensorflow如何继续训练之前保存的模型实例Tensorflow实现在训练好的模型上进行测试tensorflow保持每次训练结果一致的简单实现



训练模型 训练 模型 tensorflow pd

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章