Chemistry.AI | 基于循环神经网络(RNN)预测分子性质

Michelle ·
更新时间:2024-11-14
· 772 次阅读

Chemistry.AI | 基于卷积神经网络(CNN)预测分子特性

环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于循环神经网络(RNN)预测分子性质

导入库

from rdkit import Chem from rdkit.Chem.Crippen import MolLogP import numpy as np import torch import time

载入数据,计算分子指纹和描述符

maxlen = 64 with open('smiles.txt') as f: smiles = f.readlines()[:] smiles = [s.strip() for s in smiles] smiles = [s.split()[1] for s in smiles] smiles = [s for s in smiles if len(s)<maxlen] #Characters of smiles all_smiles='' for s in smiles: all_smiles+=s chars = sorted(list(set(list(all_smiles)))) c_to_i = {c:i for i,c in enumerate(chars)} print ('Max len:', maxlen) print ('Number of chars:', len(chars)) print (chars) print (c_to_i) Max len: 64 Number of chars: 45 ['#', '(', ')', '+', '-', '.', '/', '1', '2', '3', '4', '5', '6', '7', '=', '@', 'B', 'C', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'O', 'P', 'S', 'V', 'Z', '[', '\\', ']', 'a', 'c', 'e', 'g', 'i', 'l', 'n', 'o', 'r', 's', 'u'] {'#': 0, '(': 1, ')': 2, '+': 3, '-': 4, '.': 5, '/': 6, '1': 7, '2': 8, '3': 9, '4': 10, '5': 11, '6': 12, '7': 13, '=': 14, '@': 15, 'B': 16, 'C': 17, 'F': 18, 'G': 19, 'H': 20, 'I': 21, 'K': 22, 'L': 23, 'M': 24, 'N': 25, 'O': 26, 'P': 27, 'S': 28, 'V': 29, 'Z': 30, '[': 31, '\\': 32, ']': 33, 'a': 34, 'c': 35, 'e': 36, 'g': 37, 'i': 38, 'l': 39, 'n': 40, 'o': 41, 'r': 42, 's': 43, 'u': 44}

计算每个分子的分子指纹和描述符

Y = [] num_data = 20000 st = time.time() for s in smiles[:num_data]: m = Chem.MolFromSmiles(s) logp = MolLogP(m) Y.append(logp) #Y.append(1) end = time.time() print (f'Time:{(end-st):.3f}')

数据批处理

#Dataset from torch.utils.data import Dataset, DataLoader class MolDataset(Dataset): def __init__(self, smiles, properties, c_to_i, maxlen): self.c_to_i = c_to_i self.maxlen = maxlen self.smiles = smiles self.properties = properties def __len__(self): return len(self.smiles) def __getitem__(self, idx): s = self.smiles[idx] i = torch.from_numpy(np.array([c_to_i[c] for c in s])) sample = dict() sample['X'] = i sample['L'] = len(s) sample['Y'] = self.properties[idx] return sample #Collate fn def my_collate(batch): sample = dict() X = torch.nn.utils.rnn.pad_sequence([b['X'] for b in batch], batch_first=True, padding_value = 45) Y = torch.Tensor([b['Y'] for b in batch]) L = torch.Tensor([b['L'] for b in batch]) sample['X'] = X sample['Y'] = Y sample['L'] = L return sample

定义RNN模型

#Model import torch import torch.nn as nn import torch.nn.functional as F class RNNRegressor(torch.nn.Module): def __init__(self, n_feature=128, n_rnn_layer = 1, n_char=46): super(RNNRegressor, self).__init__() self.rnn = nn.GRU(input_size=n_feature, hidden_size=n_feature, num_layers=n_rnn_layer) self.fc = nn.Linear(n_feature, 1) self.embedding = nn.Embedding(n_char, n_feature) def forward(self, x, l): x = self.embedding(x) x = x.permute((1,0,2)) output, h = self.rnn(x) selected = [] for i in range(len(l)): valid_h = h[:l[i]-1,i] valid_h = torch.mean(valid_h, 0) selected.append(valid_h) selected = torch.stack(selected) retval = self.fc(selected) return retval

训练模型

#Train model import time lr = 1e-4 model = RNNRegressor(64, 1, 46).cuda() #Dataset train_smiles = smiles[:19000] test_smiles = smiles[19000:20000] train_logp = Y[:19000] test_logp = Y[19000:20000] train_dataset = MolDataset(train_smiles, train_logp, c_to_i, maxlen) test_dataset = MolDataset(test_smiles, test_logp, c_to_i, maxlen) #Dataloader train_dataloader = DataLoader(train_dataset, batch_size=128, num_workers=1, collate_fn=my_collate) test_dataloader = DataLoader(test_dataset, batch_size=128, num_workers=1, collate_fn=my_collate) optimizer = torch.optim.Adam(model.parameters(), lr=lr) #optimizer = torch.optim.SGD(model.parameters(), lr=lr) loss_fn = nn.MSELoss() loss_list = [] st = time.time() for epoch in range(20): epoch_loss = [] for i_batch, batch in enumerate(train_dataloader): x, y, l = \ batch['X'].cuda().long(), batch['Y'].cuda().float(), batch['L'].cuda().long() pred = model(x, l).squeeze(-1) loss = loss_fn(pred, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() loss_list.append(loss.data.cpu().numpy()) epoch_loss.append(loss.data.cpu().numpy()) if True: print (epoch, np.mean(np.array(epoch_loss))) end = time.time() print ('Time:', end-st) 0 5.3075666 1 3.9476352 2 3.7014515 3 3.0184703 4 2.3332028 5 1.8761007 6 1.3051379 7 0.9804973 8 0.7861054 9 0.65022063 10 0.5559791 11 0.4898691 12 0.44078177 13 0.40346482 14 0.37828985 15 0.3515944 16 0.33561063 17 0.32390222 18 0.3072901 19 0.2942933 Time: 117.68075275421143

保存模型

#Save model fn = 'save.pt' torch.save(model.state_dict(), fn)

加载模型

#Load model model.load_state_dict(torch.load(fn))

绘制损失曲线

import matplotlib.pyplot as plt plt.plot(loss_list) plt.xlabel('Num iteration') plt.ylabel('Loss')

测试模型

#Test model model.eval() with torch.no_grad(): y_pred_train, y_pred_test = [], [] loss_train, loss_test = [], [] pred_train, pred_test = [], [] true_train, true_test = [], [] for batch in train_dataloader: x, y, l = \ batch['X'].cuda().long(), batch['Y'].cuda().float(), batch['L'].cuda().long() pred = model(x, l).squeeze(-1) pred_train.append(pred.data.cpu().numpy()) true_train.append(y.data.cpu().numpy()) loss_train.append(loss_fn(y, pred).data.cpu().numpy()) for batch in test_dataloader: x, y, l = \ batch['X'].cuda().long(), batch['Y'].cuda().float(), batch['L'].cuda().long() pred = model(x, l).squeeze(-1) pred_test.append(pred.data.cpu().numpy()) true_test.append(y.data.cpu().numpy()) loss_test.append(loss_fn(y, pred).data.cpu().numpy()) pred_train = np.concatenate(pred_train, -1) pred_test = np.concatenate(pred_test, -1) true_train = np.concatenate(true_train, -1) true_test = np.concatenate(true_test, -1) print ('Train loss:', np.mean(np.array(loss_train))) print ('Test loss:', np.mean(np.array(loss_test)))

Train loss: 0.290517
Test loss: 0.21602286

plt.scatter(true_train, pred_train, s=1) plt.scatter(true_test, pred_test, s=1) plt.plot([-8,12], [-8,12]) plt.xlabel('True') plt.ylabel('Pred')


作者:qq2648008726



循环神经网络 循环 rnn 神经网络

需要 登录 后方可回复, 如果你还没有账号请 注册新账号