磁通连续性原理:∑ϕ=0\sum\phi=0∑ϕ=0。
全电流定律:Hl=Ni,Hl=Ni,Hl=Ni,定义NiNiNi为磁路磁动势,则磁路KVLKVLKVL方程F=Ni=HlF=Ni=HlF=Ni=Hl。当磁路存在气隙δ\deltaδ则F=Ni=Hfelfe+HδδF=Ni=H_{fe}l_{fe}+H_{\delta}\deltaF=Ni=Hfelfe+Hδδ。
磁路欧姆定律与电感:
{F=ϕRmNi=F=Hlϕ=BSB=μH\begin{cases}F=\phi R_m\\Ni=F=Hl\\\phi=BS\\B=\mu H \end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧F=ϕRmNi=F=Hlϕ=BSB=μH⇒\Rightarrow⇒{Rm=lμSΛm=μSl,\begin{cases} R_m=\frac{l}{\mu S}\\ \Lambda_m=\frac{\mu S}{l}\end{cases},{Rm=μSlΛm=lμS,铁磁性物质中μ\muμ用μfe\mu_{fe}μfe替代 ψ=Nϕ=NFΛm=N2iΛm=Li ⇒L=N2Λm\psi=N\phi=NF\Lambda_m=N^2i\Lambda_m=Li \ \ \ \Rightarrow L=N^2\Lambda_mψ=Nϕ=NFΛm=N2iΛm=Li ⇒L=N2Λm X=ωL=ωN2Λm=ωN2μSlX=\omega L=\omega N^2\Lambda_m=\omega N^2\frac{\mu S}{l}X=ωL=ωN2Λm=ωN2lμS电磁感应定律:e=−dψdt=−Ndϕdte=-\frac{d\psi}{dt}=-N\frac{d\phi}{dt}e=−dtdψ=−Ndtdϕ
能量转换效率:η=P2P1=(1−∑pP2+∑p),\eta=\frac{P_2}{P_1}=(1-\frac{\sum p}{P_2+\sum p}),η=P1P2=(1−P2+∑p∑p),式中P1P_1P1为输入功率P2P_2P2为输出功率∑p\sum p∑p为总损耗
变压器的基本工作原理和结构 额定值 单相:SN=U1NI1N=U2NI2NS_N=U_{1N}I_{1N}=U_{2N}I_{2N}SN=U1NI1N=U2NI2N 三相:SN=3U1NI1N=3U2NI2NS_N=\sqrt{3}U_{1N}I_{1N}=\sqrt{3}U_{2N}I_{2N}SN=3U1NI1N=3U2NI2N 变压器的运行分析 空载运行磁场分析与电动势分析:
U˙1→I˙0→F˙0=N1I˙0⇒{ϕ˙→{e2=−N2dϕdte1=−N1dϕdtϕ˙σ1→eσ1=−N1dϕσ1dt\dot U_1\rightarrow\dot I_0\rightarrow\dot F_0=N_1\dot I_0\Rightarrow\begin{cases}\dot\phi\rightarrow\begin{cases}e_2=-N_2\frac{d\phi}{dt}\\e_1=-N_1\frac{d\phi}{dt} \end{cases}\\\dot{\phi}_{\sigma_1}\rightarrow e_{\sigma_1}=-N_1\frac{d\phi_{\sigma_1}}{dt} \end{cases}U˙1→I˙0→F˙0=N1I˙0⇒⎩⎪⎨⎪⎧ϕ˙→{e2=−N2dtdϕe1=−N1dtdϕϕ˙σ1→eσ1=−N1dtdϕσ1 主磁通感应电势:u0−i0r1=e1+eσ1u_0-i_0r_1=e_1+e_{\sigma_1}u0−i0r1=e1+eσ1 {ϕ=ϕmsinωte1=−N1dϕdt⇒e1=−N1ϕmωcosωt=ωN1ϕmsin(ωt−π2)=E1msin(ωt−π2)\begin{cases} \phi=\phi_msin\omega t\\e_1=-N_1\frac{d\phi}{dt}\end{cases}\Rightarrow e_1=-N_1\phi_m\omega cos\omega t=\omega N_1\phi_msin(\omega t-\frac{\pi}{2})=E_{1m}sin(\omega t-\frac{\pi}{2}){ϕ=ϕmsinωte1=−N1dtdϕ⇒e1=−N1ϕmωcosωt=ωN1ϕmsin(ωt−2π)=E1msin(ωt−2π) 相量形式:E1˙=E1m˙2=−jωN1ϕ˙m2=−j4.44fN1ϕ˙m\dot{E_1}=\frac{\dot{E_{1m}}}{\sqrt{2}}=-j\frac{\omega N_1\dot\phi_m}{\sqrt{2}}=-j4.44fN_1\dot\phi_mE1˙=2E1m˙=−j2ωN1ϕ˙m=−j4.44fN1ϕ˙m 漏电动势分析:ϕσ1=ϕσ1msinωt\phi_{\sigma_1}=\phi_{\sigma_{1m}}sin\omega tϕσ1=ϕσ1msinωt eσ1=−N1dϕσ1dt=ωN1ϕσ1msin(ωt−π2)=E1msin(ωt−π2))e_{\sigma_1}=-N_1\frac{d\phi_{\sigma_1}}{dt}=\omega N_1\phi_{\sigma_{1m}}sin(\omega t-\frac{\pi}{2})=E_{1m}sin(\omega t-\frac{\pi}{2}))eσ1=−N1dtdϕσ1=ωN1ϕσ1msin(ωt−2π)=E1msin(ωt−2π)) 相量形式:E˙σ1=E˙σ1m2=−jωN1ϕ˙σ1m2=−j4.44fN1ϕ˙σ1m\dot E_{\sigma_1}=\frac{\dot E_{\sigma_{1m}}}{\sqrt{2}}=-j\frac{\omega N_1\dot\phi_{\sigma_{1m}}}{\sqrt{2}}=-j4.44fN_1\dot\phi_{\sigma_{1m}}E˙σ1=2E˙σ1m=−j2ωN1ϕ˙σ1m=−j4.44fN1ϕ˙σ1m 漏电抗:E˙σ1=−jωN1ϕ˙σ1m2⋅I0˙I0˙=−jωN1ϕσ1m2I0=−jωLσ1I0˙=−jx1I0˙\dot E_{\sigma_1}=-j\frac{\omega N_1\dot\phi_{\sigma_{1m}}}{\sqrt{2}}\cdot \frac{\dot{I_0}}{\dot{I_0}}=-j\frac{\omega N_1\phi_{\sigma_{1m}}}{\sqrt{2}I_0}=-j\omega L_{\sigma_1}\dot{I_0}=-jx_1\dot{I_0}E˙σ1=−j2ωN1ϕ˙σ1m⋅I0˙I0˙=−j2I0ωN1ϕσ1m=−jωLσ1I0˙=−jx1I0˙其中Lσ1=N1ϕσ1m2I0L_{\sigma_1}=\frac{N_1\phi_{\sigma_{1m}}}{\sqrt{2}I_0}Lσ1=2I0N1ϕσ1m称为原绕组的漏电感,x1=ωLσ1=ωN12Λσ1x_1=\omega L_{\sigma_1}=\omega N_1^2\Lambda_{\sigma_1}x1=ωLσ1=ωN12Λσ1称为原绕组的漏电抗,其大小不随电流大小变化。 电动势平衡方程式: 原边:U˙1=−E˙1−E˙σ1+I˙0r1=−E˙1+I˙0(r1+jx1)=−E1˙+I0˙z1,z1\dot U_1=-\dot E_1-\dot E_{\sigma_1}+\dot I_0r_1=-\dot E_1+\dot I_0(r_1+jx_1)=-\dot{E_1}+\dot{I_0}z_1,z_1U˙1=−E˙1−E˙σ1+I˙0r1=−E˙1+I˙0(r1+jx1)=−E1˙+I0˙z1,z1称为原绕组的漏阻抗。 副边:因为空载,U˙20=E˙2\dot U_{20}=\dot E_2U˙20=E˙2 空载电流很小所以可认为{U˙1≈−E˙1U1≈E1=4.44fN1ϕm\begin{cases} \dot U_1\approx-\dot E_1\\ U_1\approx E_1=4.44fN_1\phi_m\end{cases}{U˙1≈−E˙1U1≈E1=4.44fN1ϕm 变压器变比:定义为原边电动势与副边电动势之比k=E1E2=4.44fN1ϕm4.44fN2ϕm=N1N2k=\frac{E_1}{E_2}=\frac{4.44fN_1\phi_m}{4.44fN_2\phi_m}=\frac{N_1}{N_2}k=E2E1=4.44fN2ϕm4.44fN1ϕm=N2N1 空载电流分析 大小:I0=E1rm2+xm2≈U1rm2+xm2I_0=\frac{E_1}{\sqrt{r_m^2+x_m^2}}\approx\frac{U_1}{\sqrt{r_m^2+x_m^2}}I0=rm2+xm2E1≈rm2+xm2U1 相位:I˙0=−E˙1rm+jxm=−E˙1∣Zm∣∠−ψ0\dot I_0=\frac{-\dot E_1}{r_m+jx_m}=\frac{-\dot E_1}{|Z_m|}\angle-\psi_0I˙0=rm+jxm−E˙1=∣Zm∣−E˙1∠−ψ0,由于xm>>rmx_m>>r_mxm>>rm,所以ψ0=tg−1xmrm\psi_0=tg^{-1}\frac{x_m}{r_m}ψ0=tg−1rmxm接近90。90^。90。 空载运行方程式:{U˙1=−E˙1+I˙0Z1E˙1=−j4.44fN1ϕ˙mI˙0=−E˙1ZmE˙2=−j4.44fN2ϕ˙mU˙20=E˙2\begin{cases} \dot U_1=-\dot E_1+\dot I_0Z_1\\ \dot E_1=-j4.44fN_1\dot\phi_m\\ \dot I_0=\frac{-\dot E_1}{Z_m}\\ \dot E_2=-j4.44fN_2\dot\phi_m\\ \dot U_{20}=\dot E_2 \end{cases}⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧U˙1=−E˙1+I˙0Z1E˙1=−j4.44fN1ϕ˙mI˙0=Zm−E˙1E˙2=−j4.44fN2ϕ˙mU˙20=E˙2 负载运行电磁分析及基本方程:
电势分析及电势平衡:
U˙1→I˙1→F˙1=N1I˙1→ϕσ1→E˙σ1U˙2→I˙2→F˙2=N2I˙2→ϕσ2→E˙σ2\dot U_1\rightarrow\dot I_1\rightarrow\dot F_1=N_1\dot I_1\rightarrow\phi_{\sigma_1}\rightarrow \dot E_{\sigma_1}\\\dot U_2\rightarrow\dot I_2\rightarrow\dot F_2=N_2\dot I_2\rightarrow\phi_{\sigma_2}\rightarrow \dot E_{\sigma_2}U˙1→I˙1→F˙1=N1I˙1→ϕσ1→E˙σ1U˙2→I˙2→F˙2=N2I˙2→ϕσ2→E˙σ2 F˙m=F˙1+F˙2=N1I˙m→ϕm→{E˙1E˙2\dot F_m=\dot F_1+\dot F_2=N_1\dot I_m\rightarrow\phi_m\rightarrow\begin{cases}\dot E_1\\ \dot E_2\end{cases}F˙m=F˙1+F˙2=N1I˙m→ϕm→{E˙1E˙2基本方程:
电动势平衡方程式:
{U˙1=−(E˙1+E˙σ1)+I˙1r1=−E˙1+I˙1r1+jI˙1x1=−E˙1+I˙1z1U˙2=(E˙2+E˙σ2)−I˙2r2=E˙2−I˙2r2−jI˙2x2=E˙2−I˙2z2U˙2=I˙2z2\begin{cases}\dot U_1=-(\dot E_1+\dot E_{\sigma_1})+\dot I_1r_1=-\dot E_1+\dot I_1r_1+j\dot I_1x_1=-\dot E_1+\dot I_1z_1\\ \dot U_2=(\dot E_2+\dot E_{\sigma_2})-\dot I_2r_2=\dot E_2-\dot I_2r_2-j\dot I_2x_2=\dot E_2-\dot I_2z_2\\ \dot U_2=\dot I_2z_2\end{cases}⎩⎪⎨⎪⎧U˙1=−(E˙1+E˙σ1)+I˙1r1=−E˙1+I˙1r1+jI˙1x1=−E˙1+I˙1z1U˙2=(E˙2+E˙σ2)−I˙2r2=E˙2−I˙2r2−jI˙2x2=E˙2−I˙2z2U˙2=I˙2z2
七个基本方程:{U˙1=−E˙1+I1z1U˙2=E˙2−I˙2z2E˙1=−j4.44fN1ϕmE˙2=E˙1/kI˙1=I˙m+(−I˙2/k)I˙m=−E˙1/zmU˙2=I˙2ZL\begin{cases} \dot U_1=-\dot E_1+I_1z_1\\ \dot U_2=\dot E_2-\dot I_2z_2\\ \dot E_1=-j4.44fN_1\phi_m\\ \dot E_2=\dot E_1/k\\ \dot I_1=\dot I_m+(-\dot I_2/k)\\ \dot I_m=-\dot E_1/z_m\\ \dot U_2=\dot I_2Z_L\end{cases}⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧U˙1=−E˙1+I1z1U˙2=E˙2−I˙2z2E˙1=−j4.44fN1ϕmE˙2=E˙1/kI˙1=I˙m+(−I˙2/k)I˙m=−E˙1/zmU˙2=I˙2ZL
等效归算规律:
凡是单位为伏特的物理量的归算值等于其原来的kkk倍,如U˙′=kU˙\dot U'=k\dot UU˙′=kU˙ 电流的归算值等于其原来的1k\frac1kk1倍,如I˙′=1kI˙\dot I'=\frac1k\dot II˙′=k1I˙ 凡是单位为欧姆的物理量的归算值等于其原来的k2k^2k2倍,及Z′=k2ZZ'=k^2ZZ′=k2Z等效归算后的方程:{U˙1=−E˙1+I1z1U˙2′=E˙2′−I˙2′z2′E˙1=−j4.44fN1ϕmE˙2′=E˙1I˙1=I˙m+(−I˙2′)I˙m=−E˙1/zmU˙2′=I˙2′ZL′\begin{cases} \dot U_1=-\dot E_1+I_1z_1\\ \dot U'_2=\dot E'_2-\dot I'_2z'_2\\ \dot E_1=-j4.44fN_1\phi_m\\ \dot E'_2=\dot E_1\\ \dot I_1=\dot I_m+(-\dot I'_2)\\ \dot I_m=-\dot E_1/z_m\\ \dot U'_2=\dot I'_2Z'_L\end{cases}⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧U˙1=−E˙1+I1z1U˙2′=E˙2′−I˙2′z2′E˙1=−j4.44fN1ϕmE˙2′=E˙1I˙1=I˙m+(−I˙2′)I˙m=−E˙1/zmU˙2′=I˙2′ZL′
功率分析:{P1=U1I1cosφ1=pCu1+pfe+PMP2=PM−pcu2=U2′I2′cosφ2PM=E2′I2′cosψ2pcu1=I12r1pcu2=I2′2r2′pfe=Im2rm\begin{cases}P_1=U_1I_1cos\varphi_1=p_{Cu1}+p_{fe}+P_M\\P_2=P_M-p_{cu2}=U'_2I'_2cos\varphi_2\\P_M=E'_2I'_2cos\psi_2\\p_{cu1}=I_1^2r_1\\p_{cu2}=I'^2_2r'_2\\p_{fe}=I_m^2r_m\end{cases}⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧P1=U1I1cosφ1=pCu1+pfe+PMP2=PM−pcu2=U2′I2′cosφ2PM=E2′I2′cosψ2pcu1=I12r1pcu2=I2′2r2′pfe=Im2rm
参数测定空载实验:
参数计算: pfe=p0−pcu1≈p0=I02rm⇒rm=p0I02p_{fe}=p_0-p_{cu1}\approx p_0=I_0^2r_m\Rightarrow r_m=\frac{p_0}{I_0^2}pfe=p0−pcu1≈p0=I02rm⇒rm=I02p0 空载总阻抗:z0=z1+zm≈zm=U1NI0z_0=z_1+z_m\approx z_m=\frac{U_{1N}}{I_0}z0=z1+zm≈zm=I0U1N 激磁电抗:xm≈x0=z02−r02x_m\approx x_0=\sqrt{z_0^2-r_0^2}xm≈x0=z02−r02 k=高压边匝数低压边匝数=高压边电动势低压边电动势≈U20U1Nk=\frac{高压边匝数}{低压边匝数}=\frac{高压边电动势}{低压边电动势}\approx\frac{U_{20}}{U_{1N}}k=低压边匝数高压边匝数=低压边电动势高压边电动势≈U1NU20短路实验
参数计算:
负载损耗:pk=pcu1+pcu2+pfe≈pcu1+pcu2p_k=p_{cu1}+p_{cu2}+p_{fe}\approx p_{cu1}+p_{cu2}pk=pcu1+pcu2+pfe≈pcu1+pcu2,I1=I1NI_1=I_{1N}I1=I1N时,功率损耗为额定的负载损耗pkNp_{kN}pkN,所以稳态短路时pk=pcu1+pcu2+pfe≈pcu1+pcu2=pkNp_k=p_{cu1}+p_{cu2}+p_{fe}\approx p_{cu1}+p_{cu2}=p_{kN}pk=pcu1+pcu2+pfe≈pcu1+pcu2=pkN
漏阻抗:zk=UKIKz_k=\frac{U_K}{I_K}zk=IKUK
短路电阻:rk=pkIk2r_k=\frac{p_k}{I_k^2}rk=Ik2pk
短路阻抗:xk=zk2−rk2x_k=\sqrt{z_k^2-r_k^2}xk=zk2−rk2
若要分离原副绕组的阻抗值,则{r1=r2′=rk2x1=x2′=xk2\begin{cases} r_1=r'_2=\frac{r_k}2\\ x_1=x'_2=\frac{x_k}2\end{cases}{r1=r2′=2rkx1=x2′=2xk
由于电阻受温度影响,实际油浸电力变压器工作温度为75℃,所以:
{rk75℃=rk235+75235+θzk75℃=r75℃2+xk2\begin{cases} r_{k75℃}=r_k\frac{235+75}{235+\theta}\\ z_{k75℃}=\sqrt{r^2_{75℃}+x_k^2}\end{cases}{rk75℃=rk235+θ235+75zk75℃=r75℃2+xk2
三相变压器计算激磁阻抗时应用一相的功率,电压,电流计算
变压器运行性能阻抗电压:uk=I1NZk75℃U1N⋅100%=Zk75℃Z1N=Zk75℃∗ukr=I1Nrk75℃U1N⋅100%=rk75℃∗ukx=I1NxkU1N⋅100%=xk∗u_k=\frac{I_{1N}Z_{k75℃}}{U_{1N}}\cdot 100%=\frac{Z_{k75℃}}{Z_{1N}}=Z^*_{k75℃}\\u_{kr}=\frac{I_{1N}r_{k75℃}}{U_{1N}}\cdot 100%=r^*_{k75℃}\\u_{kx}=\frac{I_{1N}x_k}{U_{1N}}\cdot 100%=x^*_kuk=U1NI1NZk75℃⋅100%=Z1NZk75℃=Zk75℃∗ukr=U1NI1Nrk75℃⋅100%=rk75℃∗ukx=U1NI1Nxk⋅100%=xk∗
电压调整率:
定义:ΔU=U20−U2U2N⋅100%=U2N−U2U2N⋅100%=U2N′−U2′U2N′⋅100%=U1N−U2′U1N⋅100%\Delta U=\frac{U_{20}-U_2}{U_{2N}}\cdot100%=\frac{U_{2N}-U_2}{U_{2N}}\cdot100%=\frac{U'_{2N}-U'_2}{U'_{2N}}\cdot100%=\frac{U_{1N}-U'_2}{U_{1N}}\cdot100%ΔU=U2NU20−U2⋅100%=U2NU2N−U2⋅100%=U2N′U2N′−U2′⋅100%=U1NU1N−U2′⋅100% 由一般变压器φ1≈φ2\varphi_1\approx\varphi_2φ1≈φ2可得:ΔU≈I1rkcosφ2+I1xksinφ2U1N=βukrcosφ2+βukxsinφ2\Delta U\approx\frac{I_1r_kcos\varphi_2+I_1x_ksin\varphi_2}{U_{1N}}=\beta u_{kr}cos\varphi_2+\beta u_{kx}sin\varphi_2ΔU≈U1NI1rkcosφ2+I1xksinφ2=βukrcosφ2+βukxsinφ2,其中β=I1I1N=I2I2N\beta=\frac{I_1}{I_{1N}}=\frac{I_2}{I_{2N}}β=I1NI1=I2NI2变压器损耗与效率:
效率:η=P1P2⋅100%=(1−pfe+pcup2+pfe+pcu)⋅100%\eta=\frac{P_1}{P_2}\cdot100%=(1-\frac{p_{fe}+p_{cu}}{p_2+p_{fe}+p_{cu}})\cdot100%η=P2P1⋅100%=(1−p2+pfe+pcupfe+pcu)⋅100%
假定:
计算P2P_2P2时忽略负载时U2U_2U2的变化。即:
P2=U2I2cosφ2≈U2NI2N(I2I2N)cosφ2=βSNcosφ2P_2=U_2I_2cos\varphi_2\approx U_{2N}I_{2N}(\frac{I_2}{I_{2N}})cos\varphi_2=\beta S_Ncos\varphi_2P2=U2I2cosφ2≈U2NI2N(I2NI2)cosφ2=βSNcosφ2
认为空载到负载,主磁通基本不变且忽略空载铜耗的影响:
pfe=P0=常数p_{fe}=P_0=常数pfe=P0=常数
认为额定负载时的负载损耗等于额定电流时的短路损耗,稳态短路实验室外电压低磁密小,故忽略铁耗:
pcu=I12rk=(I1I1N)2I1N2rk=βpkNp_{cu}=I_1^2r_k=(\frac{I_1}{I_{1N}})^2I_{1N}^2r_k=\beta p_{kN}pcu=I12rk=(I1NI1)2I1N2rk=βpkN
从而η=(1−p0+β2pkNβSNcosφ2+p0+β2pkN)⋅100%\eta=(1-\frac{p_0+\beta^2p_{kN}}{\beta S_Ncos\varphi_2+p_0+\beta^2p_{kN}})\cdot100%η=(1−βSNcosφ2+p0+β2pkNp0+β2pkN)⋅100%
令dηdβ=0\frac{d\eta}{d\beta}=0dβdη=0
则最大值条件为:p0=β2pkN或β=p0pkNp_0=\beta^2p_{kN}或\beta=\sqrt{\frac{p_0}{p_{kN}}}p0=β2pkN或β=pkNp0
最大值为:
ηmax=[1−2p0p0pkNSNcosφ2+2p0]
\eta_{max}=[1-\frac{2p_0}{\sqrt{\frac{p_0}{p_{kN}}}S_Ncos\varphi_2+2p_0}]
ηmax=[1−pkNp0SNcosφ2+2p02p0]