前言
在前几篇博客中,分别就棋子的颜色识别、模板匹配等定位方式进行了介绍和实践,这一篇博客就来验证一下github中最热门的跳一跳外挂中采用的像素遍历的方法。
方法说明
像素遍历的实质依然是颜色识别。
在github中给出的方法中,采用像素遍历的方法是:
上诉方法的代码如下(可以自行到github下载):
def find_piece_and_board(im):
#寻找关键坐标
w, h = im.size
piece_x_sum = 0
piece_x_c = 0
piece_y_max = 0
board_x = 0
board_y = 0
scan_x_border = int(w / 8) # 扫描棋子时的左右边界
scan_start_y = 0 # 扫描的起始 y 坐标
im_pixel = im.load()
# 以 50px 步长,尝试探测 scan_start_y
for i in range(int(h / 3), int(h*2 / 3), 50):
last_pixel = im_pixel[0, i]
for j in range(1, w):
pixel = im_pixel[j, i]
# 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
if pixel != last_pixel:
scan_start_y = i - 50
break
if scan_start_y:
break
print('scan_start_y: {}'.format(scan_start_y))
# 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
for i in range(scan_start_y, int(h * 2 / 3)):
# 横坐标方面也减少了一部分扫描开销
for j in range(scan_x_border, w - scan_x_border):
pixel = im_pixel[j, i]
# 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜
# 色这样应该 OK,暂时不提出来
if (50 < pixel[0] < 60) \
and (53 < pixel[1] < 63) \
and (95 < pixel[2] < 110):
piece_x_sum += j
piece_x_c += 1
piece_y_max = max(i, piece_y_max)
if not all((piece_x_sum, piece_x_c)):
return 0, 0, 0, 0
piece_x = int(piece_x_sum / piece_x_c)
piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半
遍历过程动态演示
实际运行动画
以下是实际运行的定位动画。
优缺点分析
像素遍历的好处是无需额外的python库,但其速度显然明显低于我在前面用过的其它方法,这不奇怪,外接库用到的颜色识别方法其实是经过优化和集成的,像素遍历是其底层的技术方案,速度慢理所当然。
改进
其实上述方法还可以进一步优化,以大大减小遍历的面积:
以50像素为间隔从1/3高度开始遍历; 当首次满足给定的棋子颜色时,记录x值的和与个数,平均后得到棋子的x值; 沿x值从上向下对高度进行遍历,可以得到满足棋子颜色的最大y值和最小y值; 对y值进行处理,如减去一个固定高度,即可得到棋子的底部中心y值; 对最高点和最低点进行平均,即可得到棋盘的中心y值。遍历的过程如下:
后记
可以看到,优化后的遍历个数大大减小,速度得到极大提高。
更多内容大家可以参考专题《微信跳一跳》进行学习。
您可能感兴趣的文章:Python3实现取图片中特定的像素替换指定的颜色示例Python+OpenCV图片局部区域像素值处理改进版详解Python+OpenCV图片局部区域像素值处理详解python使用PIL模块获取图片像素点的方法Python 处理图片像素点的实例Python用61行代码实现图片像素化的示例代码Python OpenCV处理图像之图像像素点操作用python处理图片实现图像中的像素访问python3.6+opencv3.4实现鼠标交互查看图片像素python实现两张图片的像素融合