人工智能教程 - 数学基础课程1.1 - 数学分析(一)15-17 微分方程和分离变量,定积分及性质,微积分第一定理

Jacinthe ·
更新时间:2024-09-21
· 807 次阅读

微分方程 differential equation Ex: dydx=f(x)\frac{dy}{dx} = f(x)dxdy​=f(x) y=∫f(x)dxy= \int f(x) dxy=∫f(x)dx solved substitution Ex2: (ddx+x)(\frac{d}{dx}+x)(dxd​+x)为annihilation operator 湮没算符 in quantum mechnics dydx=−xy\frac{dy}{dx} = -xydxdy​=−xy dyy=−xdx\frac{dy}{y} = -xdxydy​=−xdx ∫dyy=−∫xdx\int \frac{dy}{y} = -\int xdx∫ydy​=−∫xdx lny=−x2/2+Cln y = -x^2/2 +Clny=−x2/2+C elny=e−x2/2+Ce^{lny} = e^{-x^2/2}+Celny=e−x2/2+C y=Ae−x2/2(A=ec)y = Ae^{-x^2/2} (A=e^c)y=Ae−x2/2(A=ec) Solution: y=ae−x2/2 any ay = ae^{-x^2/2} \ any \ ay=ae−x2/2 any a dydx=a.ddx.e−x2/2\frac{dy}{dx} = a.\frac{d}{dx} . e^{-x^2/2}dxdy​=a.dxd​.e−x2/2 =a.(−x).e−x2/2= a.(-x) . e^{-x^2/2}=a.(−x).e−x2/2 =−x.y= -x.y=−x.y by the way,the function is known as the normal distribution 正态分布 分离变量法

SEPARATION OF VARIABLES

dydx=f(x).g(y)\frac{dy}{dx} = f(x).g(y)dxdy​=f(x).g(y) dyg(y)=f(x)dx\frac{dy}{g(y)} = f(x)dxg(y)dy​=f(x)dx H(y)=∫dyg(y);F(x)=∫f(x)dxH(y) = \int \frac{dy}{g(y)}; F(x) = \int f(x)dxH(y)=∫g(y)dy​;F(x)=∫f(x)dx H(y)=F(x)+C→implicitH(y)=F(x)+C \rightarrow implicitH(y)=F(x)+C→implicit y=H−1(F(x)+C)y = H^{-1}(F(x)+C)y=H−1(F(x)+C) 定积分

Definite Integrals

Find Area under a curve =∫abf(x)dx\int_{a}^{b} f(x) dx∫ab​f(x)dx

累积和(cumulative sum)

To compute the area divide into rectangles add up areas take the limit as rectangles get thin 简写 abbreviation

∑i=1nai=a1+a2+...+an\sum_{i=1}^{n} a_i = a_1+a_2+...+a_n∑i=1n​ai​=a1​+a2​+...+an​

∑\sum∑ is called sigma

Notation (Riemann Sums)

General Procedure for definite integrals:

Δx=b−an\Delta x = \frac{b-a}{n}Δx=nb−a​ Pick any height of f in each interval: ∑i=1nf(ci)Δx→∫abf(x)dx{\color{Red} \sum_{i=1}^{n} f(c_i) \Delta x\rightarrow \int_{a}^{b} f(x)dx}∑i=1n​f(ci​)Δx→∫ab​f(x)dx 微积分第一定理 Fundamental theorem of calculus(FTC1) If F’(x) = f(x), then ∫abf(x)dx=F(b)−F(a)=F(x)∣ab{\color{Red} {\color{Red} \int_{a}^{b} f(x)dx = F(b)-F(a)}=F(x)|_{a}^{b}}∫ab​f(x)dx=F(b)−F(a)=F(x)∣ab​ F=∫f(x)dxF=\int f(x)dxF=∫f(x)dx NOTATION F(b)−F(a)=F(x)∣ab=F(x)∣x=ax=bF(b) - F(a) = F(x)|_{a}^{b} = F(x)|_{x=a}^{x=b}F(b)−F(a)=F(x)∣ab​=F(x)∣x=ax=b​ Ex1: F(x)=x3/3F(x) = x^3/3F(x)=x3/3 F′(x)=x2(=f(x))F'(x) = x^2(=f(x))F′(x)=x2(=f(x)) ∫abx2dx=F(b)−F(a)=b33−a33\int_{a}^{b}x^2dx = F(b)-F(a)=\frac{b^3}{3}-\frac{a^3}{3}∫ab​x2dx=F(b)−F(a)=3b3​−3a3​ ∫0bx2dx=x33∣0b=b33\int_{0}^{b}x^2dx = \frac{x^3}{3}|_{0}^{b}=\frac{b^3}{3}∫0b​x2dx=3x3​∣0b​=3b3​ True geometric interp of definit integral is that area above x-axis minus the area below the x-axis 定积分的性质

Properties of integrals

1.∫ab(f(x)+g(x))dx=∫abf(x)dx+∫abg(x)dx1.\int_{a}^{b}(f(x)+g(x))dx = \int_{a}^{b}f(x)dx +\int_{a}^{b}g(x)dx1.∫ab​(f(x)+g(x))dx=∫ab​f(x)dx+∫ab​g(x)dx 2.∫abCf(x)dx=C∫abf(x)dx2.\int_{a}^{b}Cf(x)dx = C\int_{a}^{b}f(x)dx2.∫ab​Cf(x)dx=C∫ab​f(x)dx 3.∫abf(x)dx+∫bcf(x)dx=∫acf(x)dx  (a<b<c)3.\int_{a}^{b}f(x)dx +\int_{b}^{c}f(x)dx = \int_{a}^{c}f(x)dx \ \ (a<b<c)3.∫ab​f(x)dx+∫bc​f(x)dx=∫ac​f(x)dx  (a<b<c) 4.∫aaf(x)dx=04.\int_{a}^{a}f(x)dx = 04.∫aa​f(x)dx=0 5.∫abf(x)dx=−∫baf(x)dx5.\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx5.∫ab​f(x)dx=−∫ba​f(x)dx 6. (Estimation)If f(x)<=g(x),then:∫abf(x)dx≤∫abg(x)dx\int_{a}^{b}f(x)dx \leq \int_{a}^{b}g(x)dx∫ab​f(x)dx≤∫ab​g(x)dx change of variables: (=substituion) ∫u1u2g(u)dx=∫x1x2g(u(x)).u′(x)dx{\color{Red} \int_{u_1}^{u_2}g(u)dx = \int_{x_1}^{x_2}g(u(x)).u'(x)dx}∫u1​u2​​g(u)dx=∫x1​x2​​g(u(x)).u′(x)dx
u = u(x) u1 = u(x1)
du = u’(x)dx u2 = u(x2)
Only works if u’ does not change sign
作者:KuFun人工智能



定积分 微分方程 微分 微积分 数学 课程 人工智能 变量 数学分析 教程

需要 登录 后方可回复, 如果你还没有账号请 注册新账号