1、实现原理
2、使用的函数简述
3、代码实现过程
(1)读入原始图像
(2)获取mask
(3)获取人物mask
(4)获取人物
(5)新建一张与原始图一样大小的蓝色的背景图
(6)得到蓝色背景的mask
4、整体代码
利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。
1、实现原理先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。
2、使用的函数简述(1) cv.cvtColor(img, cv.COLOR_BGR2HSV)函数
img为要进行色彩空间转换的原图
cv.COLOR_BGR2HSV即将原图RGB色彩空间转换为HSV色彩空间
(2) cv.inRange(hsv, (h_min, s_min, v_min), (h_max, s_max, v_max))函数
cv.inRange函数通过设置不同的h、s、v的min和max阈值可以获取不同色彩的一个二值的mask图,下图为各颜色的阈值表:
(3)cv.bitwise_and(img1, img2, mask),cv.bitwise_or(img1, img2, mask)和cv.bitwise_not(img)
第一个函数为按位与操作函数,将img1和img2在mask的区域内,R,G,B三个分量分别进行按位与操作。第二个函数为按位或操作函数,将img1和img2在mask的区域内,R,G,B三个分量分别进行按位或操作。第三个函数为按位取反操作函数,将img在R,G,B三个分量分别进行按位取反操作。
(4)cv.add(img1, img2)函数
将img1和img2 进行相加操作,img1和img2的尺寸必须要相同。
3、代码实现过程原图如下:
如图,要从图中提取出卡通人物,并将其贴在其他背景上。
(1)读入原始图像
src = cv.imread('person.jpg')
cv.imshow('src', src)
(2)获取mask
hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV) # 转换成hsv色彩风格
mask = cv.inRange(hsv, (35, 43, 46), (99, 255, 255)) # 利用inRange产生mask
cv.imshow('mask1', mask)
由于背景为绿色,可以提取绿色背景的mask,由上表可以查出绿色和青色的值,设置好参数后,就可以获得mask(白色区域才是mask区域):
注意:这里获取的mask为背景的mask,我们要获得人物的mask。
(3)获取人物mask通过逻辑非操作取反,即可获得人物的mask区域(白色区域):
mask = cv.bitwise_not(mask)
cv.imshow('mask2', mask)
(4)获取人物
将原始图像与原始图像在mask区域进行逻辑与操作,即可获取
timg1 = cv.bitwise_and(src, src, mask=mask)
cv.imshow('timg1', timg1)
以上操作即提取了图像中的ROI(卡通人)区域,下面介绍将介绍将提取出来的图贴到其他背景上。
(5)新建一张与原始图一样大小的蓝色的背景图
background = np.zeros(src.shape, src.dtype)
background[:,:,0] = 255
(6)得到蓝色背景的mask
mask = cv.bitwise_not(mask)
dst = cv.bitwise_or(timg1, background, mask=mask)
cv.imshow('dst1', dst)
(7)将人物图贴到蓝色背景上
dst = cv.add(dst, timg1)
cv.imshow('dst2', dst)
4、整体代码
import cv2 as cv
import numpy as np
src = cv.imread('person.jpg')
cv.imshow('src', src)
hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV) # 转换成hsv色彩风格
mask = cv.inRange(hsv, (35, 43, 46), (99, 255, 255)) # 利用inRange产生mask
cv.imshow('mask1', mask)
cv.imwrite('mask1.jpg', mask)
# 获取mask
mask = cv.bitwise_not(mask)
cv.imshow('mask2', mask)
cv.imwrite('mask2.jpg', mask)
timg1 = cv.bitwise_and(src, src, mask=mask)
cv.imshow('timg1', timg1)
cv.imwrite('timg1.jpg', timg1)
# 生成背景
background = np.zeros(src.shape, src.dtype)
background[:,:,0] = 255
# 将人物贴到背景中
mask = cv.bitwise_not(mask)
dst = cv.bitwise_or(timg1, background, mask=mask)
cv.imshow('dst1', dst)
cv.imwrite('dst1.jpg', dst)
dst = cv.add(dst, timg1)
cv.imshow('dst2', dst)
cv.imwrite('dst2.jpg', dst)
cv.waitKey(0)
cv.destroyAllWindows()
以上就是Python+OpenCV数字图像处理之ROI区域的提取的详细内容,更多关于Python OpenCV ROI区域的提取的资料请关注软件开发网其它相关文章!