torch 数据增强-随机擦除(随机遮挡)-两种方案

Serafina ·
更新时间:2024-11-14
· 903 次阅读

第一种
原文

class RandomErasing(object): def __init__(self, p=0.5, sl=0.02, sh=0.4, r1=0.3, r2=3): self.p = p self.sl = sl self.sh = sh self.r1 = r1 self.r2 = r2 def __call__(self, img): if np.random.rand() > self.p: return img img = np.array(img) while True: img_h, img_w, img_c = img.shape img_area = img_h * img_w mask_area = np.random.uniform(self.sl, self.sh) * img_area mask_aspect_ratio = np.random.uniform(self.r1, self.r2) mask_w = int(np.sqrt(mask_area / mask_aspect_ratio)) mask_h = int(np.sqrt(mask_area * mask_aspect_ratio)) mask = np.random.rand(mask_h, mask_w, img_c) * 255 left = np.random.randint(0, img_w) top = np.random.randint(0, img_h) right = left + mask_w bottom = top + mask_h if right <= img_w and bottom <= img_h: break img[top:bottom, left:right, :] = mask return Image.fromarray(img)

效果:
在这里插入图片描述
第二种:

原文

class RandomErasing(object):
def init(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=(0.485, 0.456, 0.406)):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.rl = r1
self.rh = 1./r1

def __call__(self, sample): image, landmarks_crop = sample['image_crop'], sample['landmarks_crop'] image = image / 0.0078125 + 127.5 image = self._random_erase(image) image_crop = image.astype(int) # image_crop = (image_crop - 127.5) * 0.0078125 return {'image_crop': torch.from_numpy(image_crop), 'landmarks_crop': landmarks_crop, 'img_name': sample['img_name'], 'image_ori': sample['image_ori'], 'landmarks_ori': sample['landmarks_ori'], 'landmarks_train': sample['landmarks_train'], } # return Image.fromarray(img) def _random_erase(self,image): image = np.asarray(image).copy() if np.random.random() > self.probability: return image h, w = image.shape[:2] image_area = h * w for _ in range(20): mask_area = np.random.uniform(self.sl, self.sh) * image_area aspect_ratio = np.random.uniform(self.rl, self.rh) mask_h = int(np.sqrt(mask_area * aspect_ratio)) mask_w = int(np.sqrt(mask_area / aspect_ratio)) if mask_w < w and mask_h < h: x0 = np.random.randint(0, w - mask_w) y0 = np.random.randint(0, h - mask_h) x1 = x0 + mask_w y1 = y0 + mask_h image[y0:y1, x0:x1] = np.random.uniform(0, 1) break return image

效果:
在这里插入图片描述


作者:不会飞的鹰08



数据 torch

需要 登录 后方可回复, 如果你还没有账号请 注册新账号