Matplotlib数据可视化之条形图绘制plt.bar()

Ilona ·
更新时间:2024-11-14
· 925 次阅读

条形图绘制plt.bar()

上一篇我们讲到了折线图的绘制,下来来说一下条形图绘制…
码上…

import matplotlib.pyplot as plt import numpy as np N = 5 y = [20, 30, 10, 25, 15] index = np.arange(N) plt.bar(left=index, height=y) plt.show()

这是最简单的条形图例子,下面我们来分析一下…

import matplotlib.pyplot as plt import numpy as np

这两行代码是对我们需要使用的包的导入,注意我们在这里用到了numpy这个第三方包,下面来大概介绍一下…

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
一个强大的N维数组对象 ndarray
广播功能函数
整合 C/C++/Fortran 代码的工具
线性代数、傅里叶变换、随机数生成等功能

Matplotlib经常和numpy结合使用,因此想要学习matplotlib也需要掌握一定的numpy才可,关于numpy将会在后续文章中写到…

N = 5 y = [20, 30, 10, 25, 15]

对数据进行保存…

index = np.arange(N)

np.arange()可以返回指定步长,指定个数的数,有关用法如下:

参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况
1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数。

plt.bar(left=index, height=y) plt.show()

生成条形图并引出界面,效果如下:
原创文章 2获赞 2访问量 55 关注 私信 展开阅读全文
作者:HangoverLG



plt 可视化 matplotlib 条形图 bar

需要 登录 后方可回复, 如果你还没有账号请 注册新账号