一、问题背景
二、注意事项
三、常见特殊符号及对应代码
四、引入特殊符号的万能方法
本文总结了python画图中使用各种特殊符号方式
一、问题背景在论文中,如何使用特殊符号进行表示?这里给出效果图和代码
完整代码:
from matplotlib import pyplot
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=15)
import matplotlib
import numpy as np
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
from matplotlib.patches import ConnectionPatch
%matplotlib inline
plt.rcParams['figure.figsize'] = (8.0, 6.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
# 设置标题大小
plt.rcParams['font.size'] = '16'
#解决画多幅图时出现图形部分重叠
fig = plt.figure()
matplotlib.rcParams.update(
{
'text.usetex': False,
'font.family': 'stixgeneral',
'mathtext.fontset': 'stix',
}
)
myfont = FontProperties(fname='/home/linuxidc/.local/share/fonts/文泉驿正黑.ttf')
#准备数据
x = range(0,31,2)
A=[0.2204262385828951,0.30839304560351055,0.4176158354528364,0.5689115113547377,0.7132088021728286,0.8170438670019559,0.874248496993988,0.8998229892687244,0.9022254048694502,0.9059819476369345,0.9094392004441977,0.9087585175336547,0.9070491438736936,0.9061997894620201,0.9090201312423535,0.905820399113082]
B=[0.16086354829781346,0.24623673832139087,0.37067344907663385,0.5243875153820338,0.6455296269608115,0.7488125174629785,0.8000445335114674,0.8252572187188848,0.8275862068965517,0.8340528115714526,0.8372015546918379,0.837903717245582,0.8390037802979764,0.8358911851072082,0.8319986653319986,0.8359756097560975]
C=[0.18306116800442845,0.2870632672332389,0.4144089350879133,0.5520192415258978,0.7109362008757829,0.8372170997485331,0.9124159429971054,0.9341066489655936,0.946792993279718,0.9503133935078769,0.9521488062187674,0.952635311063099,0.9535668223259951,0.9552372984652889,0.9439895451006562,0.9501552106430155]
#绘图
fig, ax = plt.subplots(1, 1)
ax.plot(x, A, marker='H',linewidth=2,markersize=7,label=r'$\alpha$')
ax.plot(x, B, marker='s',linewidth=2,markersize=7,label=r'$\ell$')
ax.plot(x, C, marker='D',linewidth=2,markersize=7,label=r'$\mu$')
plt.grid(linestyle='-.')
plt.grid(True)
y_major_locator=MultipleLocator(0.1)
x_major_locator=MultipleLocator(2)
ax=plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
ax.yaxis.set_major_locator(y_major_locator)
plt.ylim(0,1.0)
plt.xlim(0,31)
plt.legend() # 让图例生效
plt.title(r'$\alpha$ aaa')
plt.xlabel('X-axis',fontproperties=font_set) #X轴标签
plt.ylabel("Y-axis",fontproperties=font_set) #Y轴标签
plt.grid(linestyle='-.')
plt.show()
二、注意事项
应用例子,可以在标题(title)、坐标轴名(xlabel、ylabel)、标注标签处(label)增加。注意使用label等号后面使用“r”,否则直接报错。
以此为例进行替换即可↓
ax.plot(x, A, marker='H',linewidth=2,markersize=7,label=r'$\alpha$')
三、常见特殊符号及对应代码
符号 | α | β | δ | ℓ | ε |
代码 | $\alpha$ | $\beta$ | $\delta$ | $\ell$ | $\varepsilon$ |
符号 | Φ | γ | η | ι | φ |
代码 | $\phi $ | $\gamma$ | $\eta$ | $\iota$ | $\varphi$ |
符号 | λ | μ | π | θ | ρ |
代码 | $\lambda$ | $\mu$ | $\pi$ | $\theta$ | $\rho$ |
符号 | σ | τ | ω | ξ | Γ |
代码 | $\sigma$ | $\tau$ | $\omega$ | $\xi$ | $\Gamma$ |
那么肯定有人要问了,如果要表达的字符很复杂怎么办,比如带公式的。
事实上,这里有个通用方式。但是需要安装MathType。该方法在外文文献的Latex排版中也同样适用。
简单三步如下,:
①下载mathtype,并关联word
②打入你的表达式,编辑并复制
③在word输入位置黏贴
只需关注最后一行的
\[\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}} \]
去掉两边的“\[”和“\]”
保留结果为
\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}}
调用的时候两边加上$即可
ax.plot(x, C, marker='D',linewidth=2,markersize=7,label=r'$\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}} $')
效果如下:
到此这篇关于Python在画图时使用特殊符号的方法总结的文章就介绍到这了,更多相关Python特殊符号内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!