【Tensorflow2.0】kaggle Titanic生死率预测

Ella ·
更新时间:2024-09-21
· 919 次阅读

目录前言1-1,结构化数据建模流程范例一,准备数据二,定义模型三,训练模型四,评估模型五,使用模型六,保存模型 前言

kaggle Titanic生死率预测–0.81准确率–python超详细数据分析–附源代码和报告的下载地址
该文章升级版本,以前是用sklearn进行的预测(机器学习),现在用Tensorflow2.0(深度学习)

1-1,结构化数据建模流程范例 一,准备数据

titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。

结构化数据一般会使用Pandas中的DataFrame进行预处理。

import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras import models,layers dftrain_raw = pd.read_csv('./data/titanic/train.csv') dftest_raw = pd.read_csv('./data/titanic/test.csv') dftrain_raw.head(10)

在这里插入图片描述

字段说明:

Survived:0代表死亡,1代表存活【y标签】 Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】 Name:乘客姓名 【舍去】 Sex:乘客性别 【转换成bool特征】 Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】 SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】 Parch:乘客父母/孩子的个数(整数值)【数值特征】 Ticket:票号(字符串)【舍去】 Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】 Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】 Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】

利用Pandas的数据可视化功能我们可以简单地进行探索性数据分析EDA(Exploratory Data Analysis)。

label分布情况

%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar', figsize = (12,8),fontsize=15,rot = 0) ax.set_ylabel('Counts',fontsize = 15) ax.set_xlabel('Survived',fontsize = 15) plt.show()

在这里插入图片描述

年龄分布情况

%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple', figsize = (12,8),fontsize=15) ax.set_ylabel('Frequency',fontsize = 15) ax.set_xlabel('Age',fontsize = 15) plt.show()

在这里插入图片描述

年龄和label的相关性

%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density', figsize = (12,8),fontsize=15) dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density', figsize = (12,8),fontsize=15) ax.legend(['Survived==0','Survived==1'],fontsize = 12) ax.set_ylabel('Density',fontsize = 15) ax.set_xlabel('Age',fontsize = 15) plt.show()

在这里插入图片描述

下面为正式的数据预处理

def preprocessing(dfdata): dfresult= pd.DataFrame() #Pclass dfPclass = pd.get_dummies(dfdata['Pclass']) dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ] dfresult = pd.concat([dfresult,dfPclass],axis = 1) #Sex dfSex = pd.get_dummies(dfdata['Sex']) dfresult = pd.concat([dfresult,dfSex],axis = 1) #Age dfresult['Age'] = dfdata['Age'].fillna(0) dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32') #SibSp,Parch,Fare dfresult['SibSp'] = dfdata['SibSp'] dfresult['Parch'] = dfdata['Parch'] dfresult['Fare'] = dfdata['Fare'] #Carbin dfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32') #Embarked dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True) dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns] dfresult = pd.concat([dfresult,dfEmbarked],axis = 1) return(dfresult) x_train = preprocessing(dftrain_raw) y_train = dftrain_raw['Survived'].values x_test = preprocessing(dftest_raw) y_test = dftest_raw['Survived'].values print("x_train.shape =", x_train.shape ) print("x_test.shape =", x_test.shape ) x_train.shape = (712, 15) x_test.shape = (179, 15) 二,定义模型

使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

此处选择使用最简单的Sequential,按层顺序模型。

tf.keras.backend.clear_session() model = models.Sequential() model.add(layers.Dense(20,activation = 'relu',input_shape=(15,))) model.add(layers.Dense(10,activation = 'relu' )) model.add(layers.Dense(1,activation = 'sigmoid' )) model.summary() Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 20) 320 _________________________________________________________________ dense_1 (Dense) (None, 10) 210 _________________________________________________________________ dense_2 (Dense) (None, 1) 11 ================================================================= Total params: 541 Trainable params: 541 Non-trainable params: 0 _________________________________________________________________ 三,训练模型

训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。

# 二分类问题选择二元交叉熵损失函数 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['AUC']) history = model.fit(x_train,y_train, batch_size= 64, epochs= 30, validation_split=0.2 #分割一部分训练数据用于验证 ) Train on 569 samples, validate on 143 samples Epoch 1/30 569/569 [==============================] - 1s 2ms/sample - loss: 3.5841 - AUC: 0.4079 - val_loss: 3.4429 - val_AUC: 0.4129 Epoch 2/30 569/569 [==============================] - 0s 102us/sample - loss: 2.6093 - AUC: 0.3967 - val_loss: 2.4886 - val_AUC: 0.4139 Epoch 3/30 569/569 [==============================] - 0s 68us/sample - loss: 1.8375 - AUC: 0.4003 - val_loss: 1.7383 - val_AUC: 0.4223 Epoch 4/30 569/569 [==============================] - 0s 83us/sample - loss: 1.2545 - AUC: 0.4390 - val_loss: 1.1936 - val_AUC: 0.4765 Epoch 5/30 569/569 [==============================] - ETA: 0s - loss: 1.4435 - AUC: 0.375 - 0s 90us/sample - loss: 0.9141 - AUC: 0.5192 - val_loss: 0.8274 - val_AUC: 0.5584 Epoch 6/30 569/569 [==============================] - 0s 110us/sample - loss: 0.7052 - AUC: 0.6290 - val_loss: 0.6596 - val_AUC: 0.6880 Epoch 7/30 569/569 [==============================] - 0s 90us/sample - loss: 0.6410 - AUC: 0.7086 - val_loss: 0.6519 - val_AUC: 0.6845 Epoch 8/30 569/569 [==============================] - 0s 93us/sample - loss: 0.6246 - AUC: 0.7080 - val_loss: 0.6480 - val_AUC: 0.6846 Epoch 9/30 569/569 [==============================] - 0s 73us/sample - loss: 0.6088 - AUC: 0.7113 - val_loss: 0.6497 - val_AUC: 0.6838 Epoch 10/30 569/569 [==============================] - 0s 79us/sample - loss: 0.6051 - AUC: 0.7117 - val_loss: 0.6454 - val_AUC: 0.6873 Epoch 11/30 569/569 [==============================] - 0s 96us/sample - loss: 0.5972 - AUC: 0.7218 - val_loss: 0.6369 - val_AUC: 0.6888 Epoch 12/30 569/569 [==============================] - 0s 92us/sample - loss: 0.5918 - AUC: 0.7294 - val_loss: 0.6330 - val_AUC: 0.6908 Epoch 13/30 569/569 [==============================] - 0s 75us/sample - loss: 0.5864 - AUC: 0.7363 - val_loss: 0.6281 - val_AUC: 0.6948 Epoch 14/30 569/569 [==============================] - 0s 104us/sample - loss: 0.5832 - AUC: 0.7426 - val_loss: 0.6240 - val_AUC: 0.7030 Epoch 15/30 569/569 [==============================] - 0s 74us/sample - loss: 0.5777 - AUC: 0.7507 - val_loss: 0.6200 - val_AUC: 0.7066 Epoch 16/30 569/569 [==============================] - 0s 79us/sample - loss: 0.5726 - AUC: 0.7569 - val_loss: 0.6155 - val_AUC: 0.7132 Epoch 17/30 569/569 [==============================] - 0s 99us/sample - loss: 0.5674 - AUC: 0.7643 - val_loss: 0.6070 - val_AUC: 0.7255 Epoch 18/30 569/569 [==============================] - 0s 97us/sample - loss: 0.5631 - AUC: 0.7721 - val_loss: 0.6061 - val_AUC: 0.7305 Epoch 19/30 569/569 [==============================] - 0s 73us/sample - loss: 0.5580 - AUC: 0.7792 - val_loss: 0.6027 - val_AUC: 0.7332 Epoch 20/30 569/569 [==============================] - 0s 85us/sample - loss: 0.5533 - AUC: 0.7861 - val_loss: 0.5997 - val_AUC: 0.7366 Epoch 21/30 569/569 [==============================] - 0s 87us/sample - loss: 0.5497 - AUC: 0.7926 - val_loss: 0.5961 - val_AUC: 0.7433 Epoch 22/30 569/569 [==============================] - 0s 101us/sample - loss: 0.5454 - AUC: 0.7987 - val_loss: 0.5943 - val_AUC: 0.7438 Epoch 23/30 569/569 [==============================] - 0s 100us/sample - loss: 0.5398 - AUC: 0.8057 - val_loss: 0.5926 - val_AUC: 0.7492 Epoch 24/30 569/569 [==============================] - 0s 79us/sample - loss: 0.5328 - AUC: 0.8122 - val_loss: 0.5912 - val_AUC: 0.7493 Epoch 25/30 569/569 [==============================] - 0s 86us/sample - loss: 0.5283 - AUC: 0.8147 - val_loss: 0.5902 - val_AUC: 0.7509 Epoch 26/30 569/569 [==============================] - 0s 67us/sample - loss: 0.5246 - AUC: 0.8196 - val_loss: 0.5845 - val_AUC: 0.7552 Epoch 27/30 569/569 [==============================] - 0s 72us/sample - loss: 0.5205 - AUC: 0.8271 - val_loss: 0.5837 - val_AUC: 0.7584 Epoch 28/30 569/569 [==============================] - 0s 74us/sample - loss: 0.5144 - AUC: 0.8302 - val_loss: 0.5848 - val_AUC: 0.7561 Epoch 29/30 569/569 [==============================] - 0s 77us/sample - loss: 0.5099 - AUC: 0.8326 - val_loss: 0.5809 - val_AUC: 0.7583 Epoch 30/30 569/569 [==============================] - 0s 80us/sample - loss: 0.5071 - AUC: 0.8349 - val_loss: 0.5816 - val_AUC: 0.7605 四,评估模型

我们首先评估一下模型在训练集和验证集上的效果。

%matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(history, metric): train_metrics = history.history[metric] val_metrics = history.history['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics, 'bo--') plt.plot(epochs, val_metrics, 'ro-') plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show() plot_metric(history,"loss")

在这里插入图片描述

plot_metric(history,"AUC")

在这里插入图片描述

我们再看一下模型在测试集上的效果.

model.evaluate(x = x_test,y = y_test) [0.5191367897907448, 0.8122605] 五,使用模型 #预测概率 model.predict(x_test[0:10]) #model(tf.constant(x_test[0:10].values,dtype = tf.float32)) #等价写法 array([[0.26501188], [0.40970832], [0.44285864], [0.78408605], [0.47650957], [0.43849158], [0.27426785], [0.5962582 ], [0.59476686], [0.17882936]], dtype=float32) #预测类别 model.predict_classes(x_test[0:10]) array([[0], [0], [0], [1], [0], [0], [0], [1], [1], [0]], dtype=int32) 六,保存模型

可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。

推荐使用后一种方式进行保存。

1,Keras方式保存

# 保存模型结构及权重 model.save('./data/keras_model.h5') del model #删除现有模型 # identical to the previous one model = models.load_model('./data/keras_model.h5') model.evaluate(x_test,y_test) [0.5191367897907448, 0.8122605] # 保存模型结构 json_str = model.to_json() # 恢复模型结构 model_json = models.model_from_json(json_str) #保存模型权重 model.save_weights('./data/keras_model_weight.h5') # 恢复模型结构 model_json = models.model_from_json(json_str) model_json.compile( optimizer='adam', loss='binary_crossentropy', metrics=['AUC'] ) # 加载权重 model_json.load_weights('./data/keras_model_weight.h5') model_json.evaluate(x_test,y_test) [0.5191367897907448, 0.8122605]

2,TensorFlow原生方式保存

# 保存权重,该方式仅仅保存权重张量 model.save_weights('./data/tf_model_weights.ckpt',save_format = "tf") # 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署 model.save('./data/tf_model_savedmodel', save_format="tf") print('export saved model.') model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel') model_loaded.evaluate(x_test,y_test) [0.5191365896656527, 0.8122605]
作者:爱做梦的鱼



titanic kaggle tensorflow

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章