tensorflow实现GoogLeNet-InceptionV1

Isis ·
更新时间:2024-11-15
· 963 次阅读

GoogLeNet Inception v1 结构 及 pytorch、tensorflow、keras、paddle实现ImageNet识别

环境

python3.6,tensorflow-gpu 1.12.0

代码

# -*- coding: utf-8 -*- # @Time : 2020/2/3 9:56 # @Author : Zhao HL # @File : InceptionV1-tensorflow.py import sys, cv2, os import numpy as np import pandas as pd from PIL import Image import tensorflow as tf from my_utils import process_show, draw_loss_acc, dataInfo_show, dataset_divide tf.logging.set_verbosity(tf.logging.ERROR) # region parameters # region paths Data_path = "./data/" Data_csv_path = "./data/split.txt" Model_path = 'model/' Model_file_tf = "model/InceptionV1_tf.ckpt" Model_file_keras = "model/InceptionV1_keras.h5" Model_file_torch = "model/InceptionV1_torch.pth" Model_file_paddle = "model/InceptionV1_paddle.model" # endregion # region image parameter Img_size = 224 Img_chs = 3 Label_size = 1 Label_class = ['agricultural', 'airplane', 'baseballdiamond', 'beach', 'buildings', 'chaparral', 'denseresidential', 'forest', 'freeway', 'golfcourse', 'harbor', 'intersection', 'mediumresidential', 'mobilehomepark', 'overpass', 'parkinglot', 'river', 'runway', 'sparseresidential', 'storagetanks', 'tenniscourt'] Labels_nums = len(Label_class) # endregion # region net parameter Conv1_kernel_size = 7 Conv1_chs = 64 Conv21_kernel_size = 1 Conv21_chs = 64 Conv2_kernel_size = 3 Conv2_chs = 192 Icp3a_size = (64, 96, 128, 16, 32, 32) Icp3b_size = (128, 128, 192, 32, 96, 64) Icp4a_size = (192, 96, 208, 16, 48, 64) Icp4b_size = (160, 112, 224, 24, 64, 64) Icp4c_size = (128, 128, 256, 24, 64, 64) Icp4d_size = (112, 144, 288, 32, 64, 64) Icp4e_size = (256, 160, 320, 32, 128, 128) Icp5a_size = (256, 160, 320, 32, 128, 128) Icp5b_size = (384, 192, 384, 48, 128, 128) Out_chs1 = 128 Out_chs2 = 1024 # endregion # region hpyerparameter Learning_rate = 1e-3 Batch_size = 16 Buffer_size = 256 Infer_size = 1 Epochs = 20 Train_num = 1470 Train_batch_num = Train_num // Batch_size Val_num = 210 Val_batch_num = Val_num // Batch_size Test_num = 420 Test_batch_num = Test_num // Batch_size # endregion # endregion class MyDataset(): def __init__(self, root_path, batch_size, files_list=None): self.root_path = root_path self.batch_size = batch_size self.files_list = files_list if files_list else os.listdir(root_path) self.size = len(files_list) np.random.shuffle(self.files_list) def __len__(self): return self.size def __getitem__(self, batch_index): images, labels = [], [] start_index = batch_index * self.batch_size end_index = (batch_index + 1) * self.batch_size for index in range(start_index, end_index): label_str = os.path.basename(self.files_list[index])[:-6] label = Label_class.index(label_str) img = Image.open(os.path.join(self.root_path, self.files_list[index])) img, label = self.transform(img, label) images.append(img) labels.append(label) images = np.array(images) labels = np.array(labels) if batch_index == self.size // self.batch_size - 1: np.random.shuffle(self.files_list) return images, labels def transform(self, image, label): def Normalize(image, means, stds): for band in range(len(means)): image[:, :, band] = image[:, :, band] / 255.0 image[:, :, band] = (image[:, :, band] - means[band]) / stds[band] return image def ToOnehot(labels): labels = np.eye(Labels_nums)[labels].reshape(Labels_nums) return labels pass image = image.resize((Img_size, Img_size), Image.BILINEAR) image = Normalize(np.array(image).astype(np.float), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) label = ToOnehot(label) return image, label class InceptionV1: def __init__(self, structShow=False,trainModel=True): self.structShow = structShow self.trainModel = trainModel self.image = tf.placeholder(tf.float32, [Batch_size, Img_size, Img_size, Img_chs]) self.label = tf.placeholder(tf.float32, [Batch_size, Labels_nums]) self.predict = self.getNet() def get_w(self, shape): if np.size(shape) == 2: n = shape[0] + shape[1] else: n = shape[0] * shape[1] * shape[2] stddev = np.sqrt(2.0 / n) return tf.Variable(tf.truncated_normal(shape, mean=0, stddev=stddev), trainable=True, name='w') def get_b(self, shape): return tf.Variable(tf.zeros(shape), name='b') def InceptionV1_Model(self, input, input_chs, model_size): con11_chs, con31_chs, con3_chs, con51_chs, con5_chs, pool11_chs = model_size with tf.name_scope('conv1'): conv11_w = self.get_w([1, 1, input_chs, con11_chs]) conv11_b = self.get_b([con11_chs]) conv11 = tf.nn.conv2d(input, conv11_w, strides=[1, 1, 1, 1], padding='SAME') relu11 = tf.nn.relu(tf.nn.bias_add(conv11, conv11_b)) with tf.name_scope('conv3'): conv31_w = self.get_w([1, 1, input_chs, con31_chs]) conv31_b = self.get_b([con31_chs]) conv31 = tf.nn.conv2d(input, conv31_w, strides=[1, 1, 1, 1], padding='SAME') relu31 = tf.nn.relu(tf.nn.bias_add(conv31, conv31_b)) conv3_w = self.get_w([3, 3, con31_chs, con3_chs]) conv3_b = self.get_b([con3_chs]) conv3 = tf.nn.conv2d(relu31, conv3_w, strides=[1, 1, 1, 1], padding='SAME') relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_b)) with tf.name_scope('conv5'): conv51_w = self.get_w([1, 1, input_chs, con51_chs]) conv51_b = self.get_b([con51_chs]) conv51 = tf.nn.conv2d(input, conv51_w, strides=[1, 1, 1, 1], padding='SAME') relu51 = tf.nn.relu(tf.nn.bias_add(conv51, conv51_b)) conv5_w = self.get_w([5, 5, con51_chs, con5_chs]) conv5_b = self.get_b([con5_chs]) conv5 = tf.nn.conv2d(relu51, conv5_w, strides=[1, 1, 1, 1], padding='SAME') relu5 = tf.nn.relu(tf.nn.bias_add(conv5, conv5_b)) with tf.name_scope('pool'): pool1 = tf.nn.max_pool(input, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME') conv1_w = self.get_w([1, 1, input_chs, pool11_chs]) conv1_b = self.get_b([pool11_chs]) conv1 = tf.nn.conv2d(pool1, conv1_w, strides=[1, 1, 1, 1], padding='SAME') relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) return relu11, relu3, relu5, relu1 def InceptionV1_Out(self, input, input_chs): pool = tf.nn.avg_pool(input, ksize=[1, 5, 5, 1], strides=[1, 3, 3, 1], padding='VALID') conv_w = self.get_w([1, 1, input_chs, Out_chs1]) conv_b = self.get_b([Out_chs1]) conv = tf.nn.conv2d(pool, conv_w, strides=[1, 1, 1, 1], padding='SAME') relu = tf.nn.relu(tf.nn.bias_add(conv, conv_b)) flatten = tf.reshape(relu, [relu.shape[0], -1]) dropout1 = tf.nn.dropout(flatten, keep_prob=0.7) fc1_w = self.get_w([int(dropout1.shape[1]), Out_chs2]) fc1 = tf.matmul(dropout1, fc1_w) dropout2 = tf.nn.dropout(fc1, keep_prob=0.7) fc2_w = self.get_w([int(dropout2.shape[1]), Labels_nums]) fc2 = tf.matmul(dropout2, fc2_w) out = fc2 return out def getNet(self): with tf.name_scope('conv'): conv1_w = self.get_w([Conv1_kernel_size, Conv1_kernel_size, Img_chs, Conv1_chs]) conv1_b = self.get_b([Conv1_chs]) conv1 = tf.nn.conv2d(self.image, conv1_w, strides=[1, 2, 2, 1], padding='SAME') relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) pool1 = tf.nn.max_pool(relu1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') conv21_w = self.get_w([1, 1, Conv1_chs, Conv21_chs]) conv21_b = self.get_b([Conv21_chs]) conv21 = tf.nn.conv2d(pool1, conv21_w, strides=[1, 1, 1, 1], padding='SAME') relu21 = tf.nn.relu(tf.nn.bias_add(conv21, conv21_b)) conv2_w = self.get_w([1, 1, Conv21_chs, Conv2_chs]) conv2_b = self.get_b([Conv2_chs]) conv2 = tf.nn.conv2d(relu21, conv2_w, strides=[1, 1, 1, 1], padding='SAME') relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b)) pool2 = tf.nn.max_pool(relu2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') with tf.name_scope('inception3a'): conv1, conv3, conv5, pool = self.InceptionV1_Model(pool2, 192, Icp3a_size) inception3a = tf.concat([conv1, conv3, conv5, pool], 3) with tf.name_scope('inception3b'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception3a, 256, Icp3b_size) inception3b = tf.concat([conv1, conv3, conv5, pool], 3) pool3 = tf.nn.max_pool(inception3b, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') with tf.name_scope('inception4a'): conv1, conv3, conv5, pool = self.InceptionV1_Model(pool3, 480, Icp4a_size) inception4a = tf.concat([conv1, conv3, conv5, pool], 3) if self.trainModel == True: output1 = self.InceptionV1_Out(inception4a, 512) with tf.name_scope('inception4b'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception4a, 512, Icp4b_size) inception4b = tf.concat([conv1, conv3, conv5, pool], 3) with tf.name_scope('inception4c'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception4b, 512, Icp4c_size) inception4c = tf.concat([conv1, conv3, conv5, pool], 3) with tf.name_scope('inception4d'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception4c, 512, Icp4d_size) inception4d = tf.concat([conv1, conv3, conv5, pool], 3) if self.trainModel == True: output2 = self.InceptionV1_Out(inception4d, 528) with tf.name_scope('inception4e'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception4d, 528, Icp4e_size) inception4e = tf.concat([conv1, conv3, conv5, pool], 3) pool4 = tf.nn.max_pool(inception4e, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') with tf.name_scope('inception5a'): conv1, conv3, conv5, pool = self.InceptionV1_Model(pool4, 832, Icp5a_size) inception5a = tf.concat([conv1, conv3, conv5, pool], 3) with tf.name_scope('inception5b'): conv1, conv3, conv5, pool = self.InceptionV1_Model(inception5a, 832, Icp5b_size) inception5b = tf.concat([conv1, conv3, conv5, pool], 3) pool5 = tf.nn.avg_pool(inception5b, ksize=[1, 7, 7, 1], strides=[1, 1, 1, 1], padding='VALID') with tf.name_scope('output'): flatten = tf.reshape(pool5, [pool5.shape[0], -1]) dropout = tf.nn.dropout(flatten, keep_prob=0.6) fc_w = self.get_w([int(dropout.shape[1]), Labels_nums]) fc = tf.matmul(dropout, fc_w) output = fc # output = tf.nn.softmax(tf.nn.bias_add(fc, fc_b)) if self.structShow: print(relu1.name, relu1.shape) print(pool1.name, pool1.shape) print(relu2.name, relu2.shape) print(pool2.name, pool2.shape) print(inception3a.name, inception3a.shape) print(inception3b.name, inception3b.shape) print(pool3.name, pool3.shape) print(inception4a.name, inception4a.shape) if self.trainModel == True: print(output1.name, output1.shape) print(inception4b.name, inception4b.shape) print(inception4c.name, inception4c.shape) print(inception4d.name, inception4d.shape) if self.trainModel == True: print(output2.name, output2.shape) print(inception4e.name, inception4e.shape) print(pool4.name, pool4.shape) print(inception5a.name, inception5a.shape) print(inception5b.name, inception5b.shape) print(pool5.name, pool5.shape) print(flatten.name, flatten.shape) print(fc.name, fc.shape) print(output.name, output.shape) if self.trainModel == True: return [output, output1, output2] return output def train(): df = pd.read_csv(Data_csv_path, header=0, index_col=0) train_list = df[df['split'] == 'train']['filename'].tolist() val_list = df[df['split'] == 'val']['filename'].tolist() train_dataset = MyDataset(Data_path, batch_size=Batch_size, files_list=train_list) val_dataset = MyDataset(Data_path, batch_size=Batch_size, files_list=val_list) net = InceptionV1(structShow=True) image, label, predict = net.image, net.label, net.predict train_loss = tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[0], 1e-15, 1.0)), reduction_indices=1)) # train_loss = 0.6 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[0],1e-15,1.0)), reduction_indices=1))\ # + 0.2 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[1],1e-15,1.0)), reduction_indices=1))\ # + 0.2 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[2],1e-15,1.0)), reduction_indices=1)) val_loss = train_loss # val_loss = 1 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[0],1e-15,1.0)), reduction_indices=1))\ # + 0 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[1],1e-15,1.0)), reduction_indices=1))\ # + 0 * tf.reduce_mean(-tf.reduce_sum(label * tf.log(tf.clip_by_value(predict[2],1e-15,1.0)), reduction_indices=1)) run_step = tf.train.AdamOptimizer(Learning_rate).minimize(train_loss) correct = tf.equal(tf.argmax(predict[0], 1), tf.argmax(label, 1)) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() model = tf.train.get_checkpoint_state(Model_file_tf) # if model and model.model_checkpoint_path: # saver.restore(sess, model.model_checkpoint_path) train_losses = np.ones(Epochs) train_accs = np.ones(Epochs) val_losses = np.ones(Epochs) val_accs = np.ones(Epochs) best_loss = float("inf") best_loss_epoch = 0 for epoch in range(Epochs): print('Epoch %d/%d:' % (epoch + 1, Epochs)) train_sum_loss = 0 train_sum_acc = 0 val_sum_loss = 0 val_sum_acc = 0 for batch, (images, labels) in enumerate(train_dataset): train_acc, t_loss, pre,cor,_ = sess.run( [accuracy, train_loss,predict, correct,run_step], feed_dict={image: images, label: labels}) process_show(batch + 1, Train_batch_num, train_acc, t_loss, prefix='train:') train_sum_acc += train_acc train_sum_loss += t_loss for batch, (images, labels) in enumerate(val_dataset): val_acc, v_loss = sess.run([accuracy, val_loss], feed_dict={image: images, label: labels}) process_show(batch + 1, Val_batch_num, val_acc, v_loss, prefix='val:') val_sum_acc += val_acc val_sum_loss += v_loss train_sum_loss /= Train_batch_num train_sum_acc /= Train_batch_num val_sum_loss /= Val_batch_num val_sum_acc /= Val_batch_num train_losses[epoch] = train_sum_loss train_accs[epoch] = train_sum_acc val_losses[epoch] = val_sum_loss val_accs[epoch] = val_sum_acc print('average summary:\ntrain acc %.4f, loss %.4f ; val acc %.4f, loss %.4f' % (train_sum_acc, train_sum_loss, val_sum_acc, val_sum_loss)) if val_sum_loss < best_loss: print('val_loss improve from %.4f to %.4f, model save to %s ! \n' % ( best_loss, val_sum_loss, Model_file_tf)) best_loss = val_sum_loss best_loss_epoch = epoch + 1 saver.save(sess=sess, save_path=Model_file_tf) else: print('val_loss do not improve from %.4f \n' % (best_loss)) print('best loss %.4f at epoch %d \n' % (best_loss, best_loss_epoch)) draw_loss_acc(train_losses, train_accs, 'train') draw_loss_acc(val_losses, val_accs, 'val') if __name__ == '__main__': pass # dataset_divide(r'E:\_Python\01_deeplearning\04_GoogLeNet\Inception1\data\split.txt') train()

my_utils.py

# -*- coding: utf-8 -*- # @Time : 2020/1/21 11:39 # @Author : Zhao HL # @File : my_utils.py import sys,os,random import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image def process_show(num, nums, train_acc, train_loss, prefix='', suffix=''): rate = num / nums ratenum = int(round(rate, 2) * 100) bar = '\r%s batch %3d/%d:train accuracy %.4f, train loss %00.4f [%s%s]%.1f%% %s; ' % ( prefix, num, nums, train_acc, train_loss, '#' * (ratenum//2), '_' * (50 - ratenum//2), ratenum, suffix) sys.stdout.write(bar) sys.stdout.flush() if num >= nums: print() def dataInfo_show(data_path,csv_pth,cls_dic_path,shapesShow=True,classesShow=True): cls_dict = get_cls_dic(cls_dic_path) if classesShow: print('\n'+'*'*50) df = pd.read_csv(csv_pth) labels = df['label'].unique() label_cls = {label:cls_dict[label] for label in labels} print(label_cls) cls_count = df['label'].value_counts() cls_count = {cls_dict[k]:v for k,v in cls_count.items()} for k,v in cls_count.items(): print(k,v) if shapesShow: print('\n'+'*'*50) shapes = [] for filename in os.listdir(data_path): img = Image.open(os.path.join(data_path, filename)) img = np.array(img) shapes.append(img.shape) shapes = pd.Series(shapes) print(shapes.value_counts()) def get_cls_dic(cls_dic_path): # 读取类标签字典,只取第一个逗号前的信息 cls_df = pd.read_csv(cls_dic_path) cls_df['cls'] = cls_df['info'].apply(lambda x:x[:9]).tolist() cls_df['label'] = cls_df['info'].apply(lambda x: x[10:]).tolist() cls_df = cls_df.drop(columns=['info','other']) cls_dict = cls_df.set_index('cls').T.to_dict('list') cls_dict = {k:v[0] for k,v in cls_dict.items()} return cls_dict def dataset_divide(csv_pth): cls_df = pd.read_csv(csv_pth, header=0,index_col=0) cls_df.insert(1,'split',None) filenames = list(cls_df['filename']) random.shuffle(filenames) train_num,train_val_num = int(len(filenames)*0.7),int(len(filenames)*0.8) train_names = filenames[:train_num] val_names = filenames[train_num:train_val_num] test_names = filenames[train_val_num:] cls_df.loc[cls_df['filename'].isin(train_names),'split'] = 'train' cls_df.loc[cls_df['filename'].isin(val_names), 'split'] = 'val' cls_df.loc[cls_df['filename'].isin(test_names), 'split'] = 'test' cls_df.to_csv(csv_pth) def draw_loss_acc(loss,acc,type='',save_path=None): assert len(acc) == len(loss) x = [epoch for epoch in range(len(acc))] plt.subplot(2, 1, 1) plt.plot(x, acc, 'o-') plt.title(type+' accuracy vs. epoches') plt.ylabel('accuracy') plt.subplot(2, 1, 2) plt.plot(x, loss, '.-') plt.xlabel(type+' loss vs. epoches') plt.ylabel('loss') plt.show() if save_path: plt.savefig(os.path.join(save_path,type+"_acc_loss.png")) if __name__ == '__main__': pass
作者:GISer_Lin



googlenet tensorflow

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章