TensorFlow saver指定变量的存取

Thirza ·
更新时间:2024-11-15
· 777 次阅读

今天和大家分享一下用TensorFlow的saver存取训练好的模型那点事。

1. 用saver存取变量;
2. 用saver存取指定变量。

用saver存取变量。

话不多说,先上代码

# coding=utf-8 import os import tensorflow as tf import numpy os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告 w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32) b = tf.Variable([[4,5,6]],dtype=tf.float32,) s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32) init = tf.global_variables_initializer() saver =tf.train.Saver() with tf.Session() as sess: sess.run(init) save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定 print("save to path:",save_path)

这里我随便定义了几个变量然后进行存操作,运行后,变量w,b,s会被保存下来。保存会生成如下几个文件:

cheakpoint save_net.ckpt.data-* save_net.ckpt.index save_net.ckpt.meta

接下来是读取的代码

import tensorflow as tf import os import numpy as np os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32) b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32) a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32) saver =tf.train.Saver() with tf.Session() as sess: saver.restore(sess,'save_net.ckpt') print ("weights",sess.run(w)) print ("b",sess.run(b)) print ("s",sess.run(a))

在写读取代码时要注意变量定义的类型、大小和变量的数量以及顺序等要与存的时候一致,不然会报错。你存的时候顺序是w,b,s,取的时候同样这个顺序。存的时候w定义了dtype没有 定义name,取的时候同样要这样,因为TensorFlow存取是按照键值对来存取的,所以必须一致。这里变量名,也就是w,s之类可以不同。

如下是我成功读取的效果

用saver存取指定变量。

在我们做训练时候,有些变量是没有必要保存的,但是如果直接用tf.train.Saver()。程序会将所有的变量保存下来,这时候我们可以指定保存,只保存我们需要的变量,其他的统统丢掉。
其实很简单,只需要在上面代码基础上稍加修改,只需把tf.train.Saver()替换成如下代码

program = [] program += [w,b] tf.train.Saver(program)

这样,程序就只会存w和b了。同样,读取程序里面的tf.train.Saver()也要做如上修改。dtype,name之类依旧必须一致。

最后附上最终代码:

# coding=utf-8 # saver保存变量测试 import os import tensorflow as tf import numpy os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告 w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32) b = tf.Variable([[4,5,6]],dtype=tf.float32,) s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32) init = tf.global_variables_initializer() program = [] program += [w, b] saver =tf.train.Saver(program) with tf.Session() as sess: sess.run(init) save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定 print("save to path:",save_path) #saver提取变量测试 import tensorflow as tf import os import numpy as np os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32) b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32) a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32) program = [] program +=[w,b] saver =tf.train.Saver(program) with tf.Session() as sess: saver.restore(sess,'save_net.ckpt') print ("weights",sess.run(w)) print ("b",sess.run(b)) #print ("s",sess.run(a)) 您可能感兴趣的文章:TensorFLow用Saver保存和恢复变量tensorflow创建变量以及根据名称查找变量tensorflow获取变量维度信息TensorFlow变量管理详解



saver tensorflow 变量

需要 登录 后方可回复, 如果你还没有账号请 注册新账号