Python利用SVM算法实现识别手写数字

Bianca ·
更新时间:2024-11-13
· 558 次阅读

目录

前言

使用 SVM 进行手写数字识别

参数 C 和 γ 对识别手写数字精确度的影响

完整代码

前言

支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面。在博文《OpenCV-Python实战(13)——OpenCV与机器学习的碰撞》中,我们已经学习了如何在 OpenCV 中实现和训练 SVM 算法,同时通过简单的示例了解了如何使用 SVM 算法。在本文中,我们将学习如何使用 SVM 分类器执行手写数字识别,同时也将探索不同的参数对于模型性能的影响,以获取具有最佳性能的 SVM 分类器。

使用 SVM 进行手写数字识别

我们已经在《利用 KNN 算法识别手写数字》中介绍了 MNIST 手写数字数据集,以及如何利用 KNN 算法识别手写数字。并通过对数字图像进行预处理( desew() 函数)并使用高级描述符( HOG 描述符)作为用于描述每个数字的特征向量来获得最佳分类准确率。因此,对于相同的内容不再赘述,接下来将直接使用在《利用 KNN 算法识别手写数字》中介绍预处理和 HOG 特征,利用 SVM 算法对数字图像进行分类。

首先加载数据,并将其划分为训练集和测试集:

# 加载数据 (train_dataset, train_labels), (test_dataset, test_labels) = keras.datasets.mnist.load_data() SIZE_IMAGE = train_dataset.shape[1] train_labels = np.array(train_labels, dtype=np.int32) # 预处理函数 def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11'] / m['mu02'] M = np.float32([[1, skew, -0.5 * SIZE_IMAGE * skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SIZE_IMAGE, SIZE_IMAGE), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img # HOG 高级描述符 def get_hog(): hog = cv2.HOGDescriptor((SIZE_IMAGE, SIZE_IMAGE), (8, 8), (4, 4), (8, 8), 9, 1, -1, 0, 0.2, 1, 64, True) print("hog descriptor size: {}".format(hog.getDescriptorSize())) return hog # 数据打散 shuffle = np.random.permutation(len(train_dataset)) train_dataset, train_labels = train_dataset[shuffle], train_labels[shuffle] hog = get_hog() hog_descriptors = [] for img in train_dataset: hog_descriptors.append(hog.compute(deskew(img))) hog_descriptors = np.squeeze(hog_descriptors) results = defaultdict(list) # 数据划分 split_values = np.arange(0.1, 1, 0.1)

接下来,初始化 SVM,并进行训练:

# 模型初始化函数 def svm_init(C=12.5, gamma=0.50625): model = cv2.ml.SVM_create() model.setGamma(gamma) model.setC(C) model.setKernel(cv2.ml.SVM_RBF) model.setType(cv2.ml.SVM_C_SVC) model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)) return model # 模型训练函数 def svm_train(model, samples, responses): model.train(samples, cv2.ml.ROW_SAMPLE, responses) return model # 模型预测函数 def svm_predict(model, samples): return model.predict(samples)[1].ravel() # 模型评估函数 def svm_evaluate(model, samples, labels): predictions = svm_predict(model, samples) acc = (labels == predictions).mean() print('Percentage Accuracy: %.2f %%' % (acc * 100)) return acc *100 # 使用不同训练集、测试集划分方法进行训练和测试 for split_value in split_values: partition = int(split_value * len(hog_descriptors)) hog_descriptors_train, hog_descriptors_test = np.split(hog_descriptors, [partition]) labels_train, labels_test = np.split(train_labels, [partition]) print('Training SVM model ...') model = svm_init(C=12.5, gamma=0.50625) svm_train(model, hog_descriptors_train, labels_train) print('Evaluating model ... ') acc = svm_evaluate(model, hog_descriptors_test, labels_test) results['svm'].append(acc)

从上图所示,使用默认参数的 SVM 模型在使用 70% 的数字图像训练算法时准确率可以达到 98.60%,接下来我们通过修改 SVM 模型的参数 C 和 γ 来测试模型是否还有提升空间。

参数 C 和 γ 对识别手写数字精确度的影响

SVM 模型在使用 RBF 核时,有两个重要参数——C 和 γ,上例中我们使用 C=12.5 和 γ=0.50625 作为参数值,C 和 γ 的设定依赖于特定的数据集。因此,必须使用某种方法进行参数搜索,本例中使用网格搜索合适的参数 C 和 γ。

for C in [1, 10, 100, 1000]: for gamma in [0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.65]: model = svm_init(C, gamma) svm_train(model, hog_descriptors_train, labels_train) acc = svm_evaluate(model, hog_descriptors_test, labels_test) print(" {}".format("%.2f" % acc)) results[C].append(acc)

最后,可视化结果:

fig = plt.figure(figsize=(10, 6)) plt.suptitle("SVM handwritten digits recognition", fontsize=14, fontweight='bold') ax = plt.subplot(1, 1, 1) ax.set_xlim(0, 0.65) dim = [0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.65] for key in results: ax.plot(dim, results[key], linestyle='--', marker='o', label=str(key)) plt.legend(loc='upper left', title="C") plt.title('Accuracy of the SVM model varying both C and gamma') plt.xlabel("gamma") plt.ylabel("accuracy") plt.show()

程序的运行结果如下所示:

如图所示,通过使用不同参数,准确率可以达到 99.25% 左右。通过比较 KNN 分类器和 SVM 分类器在手写数字识别任务中的表现,我们可以得出在手写数字识别任务中 SVM 优于 KNN 分类器的结论。

完整代码

程序的完整代码如下所示:

import cv2 import numpy as np import matplotlib.pyplot as plt from collections import defaultdict import keras (train_dataset, train_labels), (test_dataset, test_labels) = keras.datasets.mnist.load_data() SIZE_IMAGE = train_dataset.shape[1] train_labels = np.array(train_labels, dtype=np.int32) def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11'] / m['mu02'] M = np.float32([[1, skew, -0.5 * SIZE_IMAGE * skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SIZE_IMAGE, SIZE_IMAGE), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img def get_hog(): hog = cv2.HOGDescriptor((SIZE_IMAGE, SIZE_IMAGE), (8, 8), (4, 4), (8, 8), 9, 1, -1, 0, 0.2, 1, 64, True) print("hog descriptor size: {}".format(hog.getDescriptorSize())) return hog def svm_init(C=12.5, gamma=0.50625): model = cv2.ml.SVM_create() model.setGamma(gamma) model.setC(C) model.setKernel(cv2.ml.SVM_RBF) model.setType(cv2.ml.SVM_C_SVC) model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)) return model def svm_train(model, samples, responses): model.train(samples, cv2.ml.ROW_SAMPLE, responses) return model def svm_predict(model, samples): return model.predict(samples)[1].ravel() def svm_evaluate(model, samples, labels): predictions = svm_predict(model, samples) acc = (labels == predictions).mean() return acc * 100 # 数据打散 shuffle = np.random.permutation(len(train_dataset)) train_dataset, train_labels = train_dataset[shuffle], train_labels[shuffle] # 使用 HOG 描述符 hog = get_hog() hog_descriptors = [] for img in train_dataset: hog_descriptors.append(hog.compute(deskew(img))) hog_descriptors = np.squeeze(hog_descriptors) # 训练数据与测试数据划分 partition = int(0.9 * len(hog_descriptors)) hog_descriptors_train, hog_descriptors_test = np.split(hog_descriptors, [partition]) labels_train, labels_test = np.split(train_labels, [partition]) print('Training SVM model ...') results = defaultdict(list) for C in [1, 10, 100, 1000]: for gamma in [0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.65]: model = svm_init(C, gamma) svm_train(model, hog_descriptors_train, labels_train) acc = svm_evaluate(model, hog_descriptors_test, labels_test) print(" {}".format("%.2f" % acc)) results[C].append(acc) fig = plt.figure(figsize=(10, 6)) plt.suptitle("SVM handwritten digits recognition", fontsize=14, fontweight='bold') ax = plt.subplot(1, 1, 1) ax.set_xlim(0, 0.65) dim = [0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.65] for key in results: ax.plot(dim, results[key], linestyle='--', marker='o', label=str(key)) plt.legend(loc='upper left', title="C") plt.title('Accuracy of the SVM model varying both C and gamma') plt.xlabel("gamma") plt.ylabel("accuracy") plt.show()

以上就是Python利用 SVM 算法实现识别手写数字的详细内容,更多关于Python SVM算法识别手写数字的资料请关注软件开发网其它相关文章!



svm算法 svm Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号