多分类损失函数
label.shape:[batch_size]; pred.shape: [batch_size, num_classes]
使用 tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
- y_true 真实值, y_pred 预测值
- from_logits,我的理解是,如果预测结果经过了softmax(单次预测结果满足和为1)就使用设为`False`,
如果预测结果未经过softmax就设为`True`.
pred = tf.convert_to_tensor([[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [2.05, 0.01, 0.94]])
label = tf.convert_to_tensor([0, 1, 2])
loss = tf.keras.losses.sparse_categorical_crossentropy(label, pred)
print(loss.numpy())
# 包含 reduction 参数, 用于对一个批次的损失函数求平均值,求和等
# loss = tf.keras.losses.SparseCategoricalCrossentropy()(label, pred)
label.shape:[batch_size, num_classes](one_hot);pred.shape:[batch_size, num_classes]
使用 tf.keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
- y_true 真实值, y_pred 预测值
- from_logits 同上
pred = tf.convert_to_tensor([[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]])
label = tf.convert_to_tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
loss = tf.keras.losses.categorical_crossentropy(label, pred)
print(loss.numpy())
二分类损失损失函数
label = tf.convert_to_tensor([0, 0, 1, 1], dtype=tf.float32)
pred = tf.convert_to_tensor([1, 1, 1, 0], dtype=tf.float32)
loss = tf.keras.losses.BinaryCrossentropy()(label, pred)
print(loss.numpy())
多分类与二分类
通常 categorical_crossentropy与 softmax激活函数搭配使用; binary_crossentropy 与 sigmoid搭配使用;
参考
您可能感兴趣的文章:详解tensorflow训练自己的数据集实现CNN图像分类解决Tensorflow安装成功,但在导入时报错的问题详解Tensorflow数据读取有三种方式(next_batch)浅谈Tensorflow由于版本问题出现的几种错误及解决方法浅谈Tensorflow模型的保存与恢复加载TensorFlow实现RNN循环神经网络TensorFlow在MAC环境下的安装及环境搭建TensorFlow模型保存/载入的两种方法关于Tensorflow中的tf.train.batch函数的使用