损失函数

Edana ·
更新时间:2024-11-13
· 654 次阅读

def SequenceMask(X, X_len,value=0): maxlen = X.size(1) mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None] X[~mask]=value return X X = torch.tensor([[1,2,3], [4,5,6]]) SequenceMask(X,torch.tensor([1,2])) X = torch.ones((2,3, 4)) SequenceMask(X, torch.tensor([1,2]),value=-1) class MaskedSoftmaxCELoss(nn.CrossEntropyLoss): # pred shape: (batch_size, seq_len, vocab_size) # label shape: (batch_size, seq_len) # valid_length shape: (batch_size, ) def forward(self, pred, label, valid_length): # the sample weights shape should be (batch_size, seq_len) weights = torch.ones_like(label) weights = SequenceMask(weights, valid_length).float() self.reduction='none' output=super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label) return (output*weights).mean(dim=1) loss = MaskedSoftmaxCELoss() loss(torch.ones((3, 4, 10)), torch.ones((3,4),dtype=torch.long), torch.tensor([4,3,0]))
作者:billgates2020



损失 函数 损失函数

需要 登录 后方可回复, 如果你还没有账号请 注册新账号