【机器学习】决策树、随机森林

Bianca ·
更新时间:2024-11-15
· 904 次阅读

from sklearn.tree import DecisionTreeClassifier,export_graphviz from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.datasets import load_wine,load_iris import numpy as np import matplotlib.pyplot as plt from sklearn.externals.six import StringIO import pydotplus #每个类别各多少个 np.bincount(load_wine().target) wine = load_wine() data = wine.data target = wine.target X_train,X_test,y_train,y_test = train_test_split(data,target) dtree = DecisionTreeClassifier(criterion='gini',max_depth=3,max_leaf_nodes=10).fit(X_train,y_train) dtree.score(X_train,y_train),dtree.score(X_test,y_test) (0.9849624060150376, 0.8222222222222222) #导出树模型 str_ = StringIO() export_graphviz(dtree,str_,feature_names=wine.feature_names,\ class_names=wine.target_names,filled=True,rounded=True) graph = pydotplus.graph_from_dot_data(str_.getvalue()) graph.write_jpg('./wine.jpg')

随机森林

from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor from sklearn.ensemble import BaggingClassifier,BaggingRegressor #自由组合算法 from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split,GridSearchCV iris = load_iris() data = iris.data target = iris.target X_train,X_test,y_train,y_test = train_test_split(data,target) dtree = DecisionTreeClassifier().fit(X_train,y_train) params = {"max_depth":[3,4,5],'max_leaf_nodes':[5,10,15]} gc = GridSearchCV(dtree,params,cv=4,n_jobs=6).fit(X_train,y_train) y_pred = gc.best_estimator_.predict(X_test) gc.best_score_ 0.9375 gc.best_estimator_.score(X_train,y_train) 0.9910714285714286 gc.best_estimator_.score(X_test,y_test) 0.9473684210526315 rfc = RandomForestClassifier(n_jobs=6) params = {"n_estimators":[10,100,500,800,1000],"max_depth":[3,4,5],'max_leaf_nodes':[5,10,15]} gc = GridSearchCV(rfc,params,cv=4,n_jobs=6).fit(X_train,y_train) gc.best_score_ 0.9732142857142857 gc.best_estimator_.score(X_train,y_train) 0.9732142857142857 gc.best_estimator_.score(X_test,y_test) 0.9210526315789473
作者:♚木思风



决策 随机森林 学习 决策树 机器学习

需要 登录 后方可回复, 如果你还没有账号请 注册新账号