Python股票数据可视化代码详解

Vanna ·
更新时间:2024-11-10
· 60 次阅读

目录

数据准备

阿里巴巴

谷歌

苹果

腾讯

亚马逊

Facebook

数据可视化

查看各个公司的股价平均值

查看各公司股价分布情况

股价走势对比

总结

import numpy as np import pandas as pd from pandas_datareader import data import datetime as dt 数据准备 ''' 获取国内股票数据的方式是:“股票代码”+“对应股市”(港股为.hk,A股为.ss) 例如腾讯是港股是:0700.hk ''' #字典:6家公司的股票 # gafataDict={'谷歌':'GOOG','亚马逊':'AMZN','Facebook':'FB', '苹果':'AAPL','阿里巴巴':'BABA','腾讯':'0700.hk'} ''' 定义函数 函数功能:计算股票涨跌幅=(现在股价-买入价格)/买入价格 输入参数:column是收盘价这一列的数据 返回数据:涨跌幅 ''' def change(column): # 买入价格 buyPrice=column[0] # 现在股价 curPrice=column[column.size-1] priceChange=(curPrice-buyPrice)/buyPrice # 判断股票是上涨还是下跌 if priceChange>0: print('股票累计上涨=',round(priceChange*100,2),'%') elif priceChange==0: print('股票无变化=',round(priceChange*100,2)*100,'%') else: print('股票累计下跌=',round(priceChange*100,2)*100,'%') # 返回数据 return priceChange ''' 三星电子 每日股票价位信息 Open:开盘价 High:最高加 Low:最低价 Close:收盘价 Volume:成交量 因雅虎连接不到,仅以三星作为获取数据示例 ''' sxDf = data.DataReader('005930', 'naver', start='2021-01-01', end='2022-01-01') sxDf.head()  OpenHighLowCloseVolumeDate     2021-01-042021-01-052021-01-062021-01-072021-01-08
8100084400802008300038655276
8160083900816008390035335669
8330084500821008220042089013
8280084200827008290032644642
8330090000830008880059013307
sxDf.info() <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null object 1 High 248 non-null object 2 Low 248 non-null object 3 Close 248 non-null object 4 Volume 248 non-null object dtypes: object(5) memory usage: 11.6+ KB sxDf.iloc[:,0:4]=sxDf.iloc[:,0:4].astype('float') sxDf.iloc[:,-1]=sxDf.iloc[:,-1].astype('int') sxDf.info() <class 'pandas.core.frame.DataFrame'>DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null float64 1 High 248 non-null float64 2 Low 248 non-null float64 3 Close 248 non-null float64 4 Volume 248 non-null int32 dtypes: float64(4), int32(1)memory usage: 10.7 KB<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null float64 1 High 248 non-null float64 2 Low 248 non-null float64 3 Close 248 non-null float64 4 Volume 248 non-null int32 dtypes: float64(4), int32(1) memory usage: 10.7 KB 阿里巴巴 # 读取数据 AliDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\阿里巴巴2017年股票数据.xlsx',index_col='Date') AliDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-262017-12-272017-12-282017-12-29
175.839996176.660004175.039993176.289993176.28999312524700
174.550003175.149994171.729996172.330002172.33000212913800
172.289993173.869995171.729996172.970001172.97000110152300
173.039993173.529999171.669998172.300003172.3000039508100
172.279999173.669998171.199997172.429993172.4299939704600
# 查看基本信息及数据类型 AliDf.info() <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 251 entries, 2017-01-03 to 2017-12-29 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 251 non-null float64 1 High 251 non-null float64 2 Low 251 non-null float64 3 Close 251 non-null float64 4 Adj Close 251 non-null float64 5 Volume 251 non-null int64 dtypes: float64(5), int64(1) memory usage: 13.7 KB # 计算涨跌幅 AliChange=change(AliDf['Close']) 股票累计上涨= 94.62 % '''增加一列累计增长百分比''' #一开始的股价 Close1=AliDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AliDf['sum_pct_change']=AliDf['Close'].apply(lambda x: (x-Close1)/Close1) AliDf['sum_pct_change'].tail() Date 2017-12-22 0.989729 2017-12-26 0.945034 2017-12-27 0.952257 2017-12-28 0.944695 2017-12-29 0.946162 Name: sum_pct_change, dtype: float64 谷歌 # 读取数据 GoogleDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\谷歌2017年股票数据.xlsx',index_col='Date') GoogleDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-262017-12-272017-12-282017-12-29
1061.1099851064.1999511059.4399411060.1199951060.119995755100
1058.0699461060.1199951050.1999511056.7399901056.739990760600
1057.3900151058.3699951048.0500491049.3699951049.3699951271900
1051.5999761054.7500001044.7700201048.1400151048.140015837100
1046.7199711049.6999511044.9000241046.4000241046.400024887500
# 计算涨跌幅 GoogleChange=change(GoogleDf['Close']) 股票累计上涨= 33.11 % '''增加一列累计增长百分比''' #一开始的股价 Close1=GoogleDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) GoogleDf['sum_pct_change']=GoogleDf['Close'].apply(lambda x: (x-Close1)/Close1) GoogleDf['sum_pct_change'].tail() Date 2017-12-22 0.348513 2017-12-26 0.344213 2017-12-27 0.334839 2017-12-28 0.333274 2017-12-29 0.331061 Name: sum_pct_change, dtype: float64 苹果 # 读取数据 AppleDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\苹果2017年股票数据.xlsx',index_col='Date') AppleDf.tail() OpenHighLowCloseAdj CloseVolumeDate2017-12-222017-12-262017-12-272017-12-282017-12-29
174.679993175.419998174.500000175.009995174.29936216349400
170.800003171.470001169.679993170.570007169.87739633185500
170.100006170.779999169.710007170.600006169.90727221498200
171.000000171.850006170.479996171.080002170.38531516480200
170.520004170.589996169.220001169.229996168.54283125999900
# 计算涨跌幅 AppleChange=change(AppleDf['Close']) 股票累计上涨= 45.7 % '''增加一列累计增长百分比''' #一开始的股价 Close1=AppleDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AppleDf['sum_pct_change']=AppleDf['Close'].apply(lambda x: (x-Close1)/Close1) AppleDf['sum_pct_change'].tail() Date 2017-12-22 0.506758 2017-12-26 0.468532 2017-12-27 0.468790 2017-12-28 0.472923 2017-12-29 0.456995 Name: sum_pct_change, dtype: float64 腾讯 # 读取数据 TencentDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\腾讯2017年股票数据.xlsx',index_col='Date') TencentDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-272017-12-282017-12-292018-01-02
403.799988405.799988400.799988405.799988405.79998816146080
405.799988407.799988401.000000401.200012401.20001216680601
404.000000408.200012402.200012408.200012408.20001211662053
408.000000408.000000403.399994406.000000406.00000016601658
406.000000406.000000406.000000406.000000406.0000000
# 读取数据 TencentDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\腾讯2017年股票数据.xlsx',index_col='Date') TencentDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-272017-12-282017-12-292018-01-02
403.799988405.799988400.799988405.799988405.79998816146080
405.799988407.799988401.000000401.200012401.20001216680601
404.000000408.200012402.200012408.200012408.20001211662053
408.000000408.000000403.399994406.000000406.00000016601658
406.000000406.000000406.000000406.000000406.0000000
# 计算涨跌幅 TencentChange=change(TencentDf['Close']) 股票累计上涨= 114.36 % '''增加一列累计增长百分比''' #一开始的股价 Close1=TencentDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) TencentDf['sum_pct_change']=TencentDf['Close'].apply(lambda x: (x-Close1)/Close1) TencentDf['sum_pct_change'].tail() Date 2017-12-22 1.142555 2017-12-27 1.118268 2017-12-28 1.155227 2017-12-29 1.143611 2018-01-02 1.143611 Name: sum_pct_change, dtype: float64 亚马逊 # 读取数据 AmazonDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\亚马逊2017年股票数据.xlsx',index_col='Date') AmazonDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-262017-12-272017-12-282017-12-29
1172.0799561174.6199951167.8299561168.3599851168.3599851585100
1168.3599851178.3199461160.5500491176.7600101176.7600102005200
1179.9100341187.2900391175.6099851182.2600101182.2600101867200
1189.0000001190.0999761184.3800051186.0999761186.0999761841700
1182.3499761184.0000001167.5000001169.4699711169.4699712688400
# 计算涨跌幅 AmazonChange=change(AmazonDf['Close']) 股票累计上涨= 55.17 % '''增加一列累计增长百分比''' #一开始的股价 Close1=AmazonDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AmazonDf['sum_pct_change']=AmazonDf['Close'].apply(lambda x: (x-Close1)/Close1) AmazonDf['sum_pct_change'].tail() Date 2017-12-22 0.550228 2017-12-26 0.561373 2017-12-27 0.568671 2017-12-28 0.573766 2017-12-29 0.551700 Name: sum_pct_change, dtype: float64 Facebook # 读取数据 FacebookDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\学习\Untitled Folder\Facebook2017年股票数据.xlsx',index_col='Date') FacebookDf.tail()  OpenHighLowCloseAdj CloseVolumeDate      2017-12-222017-12-262017-12-272017-12-282017-12-29
177.139999177.529999176.229996177.199997177.1999978509500
176.630005177.000000174.669998175.990005175.9900058897300
176.550003178.440002176.259995177.619995177.6199959496100
177.949997178.940002177.679993177.919998177.91999812220800
178.000000178.850006176.460007176.460007176.46000710261500
# 计算涨跌幅 FacebookChange=change(FacebookDf['Close']) 股票累计上涨= 51.0 % '''增加一列每日增长百分比''' # .pct_change()返回变化百分比,第一行因没有可对比的,返回Nan,填充为0 FacebookDf['pct_change']=FacebookDf['Close'].pct_change(1).fillna(0) FacebookDf['pct_change'].head() Date 2017-01-03 0.000000 2017-01-04 0.015660 2017-01-05 0.016682 2017-01-06 0.022707 2017-01-09 0.012074 Name: pct_change, dtype: float64 '''增加一列累计增长百分比''' #一开始的股价 Close1=FacebookDf['Close'][0] # .apply(lambda x: format(x, '.2%')) FacebookDf['sum_pct_change']=FacebookDf['Close'].apply(lambda x: (x-Close1)/Close1) FacebookDf['sum_pct_change'].tail() Date 2017-12-22 0.516344 2017-12-26 0.505990 2017-12-27 0.519938 2017-12-28 0.522506 2017-12-29 0.510012 Name: sum_pct_change, dtype: float64 数据可视化 import matplotlib.pyplot as plt # 查看成交量与股价之间的关系 fig=plt.figure(figsize=(10,5)) AliDf.plot(x='Volume',y='Close',kind='scatter') plt.xlabel('成交量') plt.ylabel('股价') plt.title('成交量与股价之间的关系') plt.show() <Figure size 720x360 with 0 Axes>

# 查看各个参数之间的相关性,与股价与成交量之间呈中度相关 AliDf.corr()  OpenHighLowCloseAdj CloseVolumesum_pct_changeOpenHighLowCloseAdj CloseVolumesum_pct_change
1.0000000.9992810.9987980.9982260.9982260.4246860.998226
0.9992811.0000000.9987820.9990770.9990770.4324670.999077
0.9987980.9987821.0000000.9992490.9992490.4014560.999249
0.9982260.9990770.9992491.0000001.0000000.4158011.000000
0.9982260.9990770.9992491.0000001.0000000.4158011.000000
0.4246860.4324670.4014560.4158010.4158011.0000000.415801
0.9982260.9990770.9992491.0000001.0000000.4158011.000000
查看各个公司的股价平均值 AliDf['Close'].mean() 141.79179260159364 '''数据准备''' # 计算每家公司的收盘价平均值 Close_mean={'Alibaba':AliDf['Close'].mean(), 'Google':GoogleDf['Close'].mean(), 'Apple':AppleDf['Close'].mean(), 'Tencent':TencentDf['Close'].mean(), 'Amazon':AmazonDf['Close'].mean(), 'Facebook':FacebookDf['Close'].mean()} CloseMeanSer=pd.Series(Close_mean) CloseMeanSer.sort_values(ascending=False,inplace=True) '''绘制柱状图''' # 创建画板 fig=plt.figure(figsize=(10,5)) # 绘图 CloseMeanSer.plot(kind='bar') # 设置x、y轴标签及标题 plt.xlabel('公司') plt.ylabel('股价平均值(美元)') plt.title('2017年各公司股价平均值') # 设置y周标签刻度 plt.yticks(np.arange(0,1100,100)) # 显示y轴网格 plt.grid(True,axis='y') # 显示图像 plt.show()

亚马逊和谷歌的平均股价很高,远远超过其他4家,但是仅看平均值并不能代表什么,下面从分布和走势方面查看

查看各公司股价分布情况 '''数据准备''' # 将6家公司的收盘价整合到一起 CloseCollectDf=pd.concat([AliDf['Close'], GoogleDf['Close'], AppleDf['Close'], TencentDf['Close'], AmazonDf['Close'], FacebookDf['Close']],axis=1) CloseCollectDf.columns=['Alibaba','Google','Apple','Tencent','Amazon','Facebook'] '''绘制箱型图''' # 创建画板 fig=plt.figure(figsize=(20,10)) fig.suptitle('2017年各公司股价分布',fontsize=18) # 子图1 ax1=plt.subplot(121) CloseCollectDf.plot(ax=ax1,kind='box') plt.xlabel('公司') plt.ylabel('股价(美元)') plt.title('2017年各公司股价分布') plt.grid(True,axis='y') # 因谷歌和亚马逊和两外四家的差别较大,分开查看, # 子图2 ax2=plt.subplot(222) CloseCollectDf[['Google','Amazon']].plot(ax=ax2,kind='box') # 设置x、y轴标签及标题 plt.ylabel('股价(美元)') plt.title('2017年谷歌和亚马逊股价分布') # 设置y周标签刻度 # plt.yticks(np.arange(0,1300,100)) # 显示y轴网格 plt.grid(True,axis='y') # 子图3 ax3=plt.subplot(224) CloseCollectDf[['Alibaba','Apple','Tencent','Facebook']].plot(ax=ax3,kind='box') # 设置x、y轴标签及标题 plt.xlabel('公司') plt.ylabel('股价(美元)') plt.title('2017年阿里、苹果、腾讯、Facebook股价分布') # 设置y周标签刻度 # plt.yticks(np.arange(0,1300,100)) # 显示y轴网格 plt.grid(True,axis='y') plt.subplot # 显示图像 plt.show()

从箱型图看,谷歌和亚马逊的股价分布较广,且中位数偏上,腾讯股价最为集中,波动最小,相对稳定。

股价走势对比 # 创建画板并设置大小,constrained_layout=True设置自动调整子图之间间距 fig=plt.figure(figsize=(15,10),constrained_layout=True) # ax=plt.subplots(2,1,sharex=True) fig.suptitle('股价走势对比',fontsize=18) '''绘制图像1 ''' ax1=plt.subplot(211) plt.plot(AliDf.index,AliDf['Close'],label='Alibaba') plt.plot(GoogleDf.index,GoogleDf['Close'],label='Google') plt.plot(AppleDf.index,AppleDf['Close'],label='Apple') plt.plot(TencentDf.index,TencentDf['Close'],label='Tencent') plt.plot(AmazonDf.index,AmazonDf['Close'],label='Amazon') plt.plot(FacebookDf.index,FacebookDf['Close'],label='Facebook') # # 设置xy轴标签 plt.xlabel('时间') plt.ylabel('股价') # 设置标题 # plt.title('股价走势对比') # 图例显示位置、大小 plt.legend(loc='upper left',fontsize=12) # 设置x,y轴间隔,设置旋转角度,以免重叠 plt.xticks(AliDf.index[::10],rotation=45) plt.yticks(np.arange(0, 1300, step=100)) # 显示网格 plt.grid(True) '''绘制图像2''' ax2=plt.subplot(212) plt.plot(AliDf.index,AliDf['sum_pct_change'],label='Alibaba') plt.plot(GoogleDf.index,GoogleDf['sum_pct_change'],label='Google') plt.plot(AppleDf.index,AppleDf['sum_pct_change'],label='Apple') plt.plot(TencentDf.index,TencentDf['sum_pct_change'],label='Tencent') plt.plot(AmazonDf.index,AmazonDf['sum_pct_change'],label='Amazon') plt.plot(FacebookDf.index,FacebookDf['sum_pct_change'],label='Facebook') # 设置xy轴标签 plt.xlabel('时间') plt.ylabel('累计增长率') # 设置标题 # plt.title('股价走势对比') # 图例显示位置、大小 plt.legend(loc='upper left',fontsize=12) # 设置x,y轴间隔,设置旋转角度,以免重叠 plt.xticks(AliDf.index[::10],rotation=45) plt.yticks(np.arange(0, 1.2, step=0.1)) # 显示网格 plt.grid(True) # 调整子图间距,subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=None, hspace=None) # 显示图像 plt.show()

可以看出,在2017年间,亚马逊和谷歌的股价虽然偏高,涨幅却不如阿里巴巴和腾讯。

总结

观察以上图形,可以得出一下结果:

1、2017年谷歌和亚马逊股价偏高,波动较大,但其涨幅并不高;

2、2017年阿里巴巴和腾讯的股价平均值相对较小,股价波动比较小,其涨幅却很高,分别达到了94.62%和114.36%。

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注软件开发网的更多内容!   



数据 数据可视化 可视化 Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号