GoogLeNet卷积神经网络--TensorFlow2

Floria ·
更新时间:2024-11-15
· 775 次阅读

GoogLeNet卷积神经网络--TensorFlow2结果展示loss和acc曲线计算参数程序 结果展示

epoch = 10
acc = 83.98%

loss和acc曲线

loss和acc曲线

计算参数

计算参数

程序 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 2020 @author: jiollos """ # 导入包 import tensorflow as tf import os import numpy as np from matplotlib import pyplot as plt from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense, \ GlobalAveragePooling2D from tensorflow.keras import Model # 设置显示格式 np.set_printoptions(threshold=np.inf) # 导入数据集 fashion = tf.keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = fashion.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print("x_train.shape", x_train.shape) # 给数据增加一个维度,使数据和网络结构匹配 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) # print("x_train.shape", x_train.shape) # 构建单个卷积class class ConvBNRelu(Model): # 默认卷积核边长是3,步长为1,使用全零填充 def __init__(self, ch, kernelsz=3, strides=1, padding='same'): super(ConvBNRelu, self).__init__() # 设置sequence self.model = tf.keras.models.Sequential([ Conv2D(ch, kernelsz, strides=strides, padding=padding), # 卷积核个数/卷积核尺寸/卷积步长/是否全零填充 BatchNormalization(), # 标准化BN层 Activation('relu') # ReLU激活函数 ]) def call(self, x): #在training=False时,BN通过整个训练集计算均值、方差去做批归一化,training=True时,通过当前batch的均值、方差去做批归一化。推理时 training=False效果好 x = self.model(x, training=False) return x # 构建inception模块class class InceptionBlk(Model): def __init__(self, ch, strides=1): super(InceptionBlk, self).__init__() # 定义 self.ch = ch self.strides = strides # 设置各卷积的内容,按照inception的结构依次设置 self.c1 = ConvBNRelu(ch, kernelsz=1, strides=strides) self.c2_1 = ConvBNRelu(ch, kernelsz=1, strides=strides) self.c2_2 = ConvBNRelu(ch, kernelsz=3, strides=1) self.c3_1 = ConvBNRelu(ch, kernelsz=1, strides=strides) self.c3_2 = ConvBNRelu(ch, kernelsz=5, strides=1) # 3*3卷积核,步长为1,全零填充 self.p4_1 = MaxPool2D(3, strides=1, padding='same') self.c4_2 = ConvBNRelu(ch, kernelsz=1, strides=strides) # 前向传播 def call(self, x): x1 = self.c1(x) x2_1 = self.c2_1(x) x2_2 = self.c2_2(x2_1) x3_1 = self.c3_1(x) x3_2 = self.c3_2(x3_1) x4_1 = self.p4_1(x) x4_2 = self.c4_2(x4_1) # concat along axis=channel # 将4个部分叠加起来,深度为3 x = tf.concat([x1, x2_2, x3_2, x4_2], axis=3) return x class Inception10(Model): # 设置默认ch=16,就是16个卷积核 def __init__(self, num_blocks, num_classes, init_ch=16, **kwargs): super(Inception10, self).__init__(**kwargs) self.in_channels = init_ch self.out_channels = init_ch self.num_blocks = num_blocks self.init_ch = init_ch # 直接为初始化中的值(3*3卷积核,步长为1) self.c1 = ConvBNRelu(init_ch) # 调用定义的sequence self.blocks = tf.keras.models.Sequential() # 有2个block,循环 for block_id in range(num_blocks): for layer_id in range(2): if layer_id == 0: # 第1层,执行inception block,步长为2 block = InceptionBlk(self.out_channels, strides=2) else: # 第2层,执行inception block,步长为1 block = InceptionBlk(self.out_channels, strides=1) self.blocks.add(block) # enlarger out_channels per block # 因为步长不一样,所以深度加深,保证输出特征抽取中信息的承载量一致 self.out_channels *= 2 # 最终经过inception后变为128个通道的数据,送入平均池化 # 平均池化层 self.p1 = GlobalAveragePooling2D() # num_classes为分类数量 self.f1 = Dense(num_classes, activation='softmax') def call(self, x): # 执行4个结构 x = self.c1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y # 输入参数,运行 model = Inception10(num_blocks=2, num_classes=10) # 设置优化器等模块 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy']) # 设置断点 checkpoint_save_path = "./checkpoint/Inception10.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('-------------load the model-----------------') model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True, save_best_only=True) # 执行训练 history = model.fit(x_train, y_train, batch_size=1024, epochs=10, validation_data=(x_test, y_test), validation_freq=1, callbacks=[cp_callback]) # 显示结果 model.summary() # 保存权重 # print(model.trainable_variables) file = open('./weights.txt', 'w') for v in model.trainable_variables: file.write(str(v.name) + '\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() # 显示训练集和验证集的acc和loss曲线 acc = history.history['sparse_categorical_accuracy'] val_acc = history.history['val_sparse_categorical_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] #plt.subplot(1, 2, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.title('Training and Validation Accuracy') plt.legend() plt.show() #plt.subplot(1, 2, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show()
作者:Jiollos



googlenet tensorflow 神经网络

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章