损失函数为Cross entropy的手写数字识别神经网络代码与实现

Maren ·
更新时间:2024-11-13
· 765 次阅读

损失函数为cross entropy ,

weights,biases的初始化为改进的初始化

import numpy as np import random class Network2(object): def _init__(self, sizes, cost): self.layernumber = len(sizes) self.sizes = len(sizes) self.defualt_weights() self.cost = cost def defualt_weights(self): self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x) / np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def cost(self, a, y): return np.sum(np.nan_to_num(-y * np.log(a) - (1 - y) * np.log(1 - a))) def feedforward(self, a): for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a) + b) return a def evaluate(self, test_data): test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def cost_derivate(self, out_activation, y): return out_activation - y def update_mini_batch(self, mini_batch, eta): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w - (eta/len(mini_batch)) * nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] activation = x activations = [x] zs = [] for b, w in zip(self.biases, self.weights): z = np.dot(w, activation) + b zs.append(z) activation = sigmoid(z) activations.append(activation) delta = self.cost_derivate(activations[-1], y) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for j in range(2, self.layernumber): z = zs[-j] ps = sigmoid_prime(z) delta = np.dot(self.weights[-j+1].transpose(), delta) * ps nabla_b[-j] = delta nabla_w[-j] = np.dot(delta, activations[-j-1].transpose()) return nabla_b, nabla_w def sgd(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data) n = len(training_data) for i in range(epochs): random.shuffle(training_data) mini_batches = [training_data[k, k + mini_batch_size] for k in range(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print('Epoch{0}:{1}/{2}'.format(i, self.evaluate(test_data), n_test)) else: print('Epoch{0} complete'.format(i)) def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) def sigmoid_prime(z): return sigmoid(z) * (1 - sigmoid(z))
作者:mercies



CROSS 损失 函数 损失函数 神经网络

需要 登录 后方可回复, 如果你还没有账号请 注册新账号