吴恩达机器学习______学习笔记记录#九、神经网络--学习

Iria ·
更新时间:2024-09-21
· 897 次阅读

9.1 代价函数

 首先引入一些便于稍后讨论的新标记方法:
       假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络层数,

我们回顾逻辑回归问题中我们的代价函数为:

      在逻辑回归中,我们只有一个输出变量,又称标量(scalar),也只有一个因变量y,但是在神经网络中,我们可以有很多输出变量,我们的h_{\theta }(x)是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为:

        这个看起来复杂很多的代价函数背后的思想还是一样的,我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同结果,然后在利用循环在K个预测中选择可能性最高的一个,将其与y中的实际数据进行比较。

       正则化的那一项只是排除了每一层

      我们从最后一层的误差开始计算,误差是激活单元的预测

      即首先用正向传播方法计算出每一层的激活单元,利用训练集的结果与神经网络预测的结果求出最后一层的误差,然后利用该误差运用反向传播法计算出直至第二层的所有误差。

       在求出了\Delta _{ij}^{(l)}之后,我们便可以计算代价函数的偏导数了,计算方法如下:

D_{ij}^{(l)} := \frac{1}{m}\Delta _{ij}^{(l)} + \lambda \theta _{ij}^{(l)} \rightarrow if j\neq 0

D_{ij}^{(l)} := \frac{1}{m}\Delta _{ij}^{(l)} \rightarrow if j= 0

9.3 反向传播算法的直观理解

 为了更好地理解反向传播算法,我们再来仔细研究一下前向传播的原理:
       前向传播算法:

在这里插入图片描述

 反向传播算法做的是:

9.4 实现注意 展开参数

下面介绍怎样快速的将矩阵展开成向量,以满足在高级最优化步骤中的需要。

9.5 梯度检验

当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解。

       为了避免这样的问题,我们采取一种叫做梯度的数值检验(Numerical Gradient Checking)方法。这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的。

       对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度。即对于某个特定的 \theta,我们计算出在  \theta-\varepsilon 处和\theta+\varepsilon 的代价值(\varepsilon是一个非常小的值,通常选取 0.001),然后求两个代价的平均,用以估计在 \theta 处的代价值。

在这里插入图片描述

 Octave 中代码如下:       

gradApprox = (J(theta + eps) – J(theta - eps)) / (2*eps)

 当\theta是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对一个参数的改变进行检验,下面是一个只针对\theta_{1}进行检验的示例:

\frac{\partial }{\partial \theta } = \frac{J(\theta _{1}+\varepsilon _{1},\theta _{2},\theta _{3},...,\theta _{n})-J(\theta _{1}-\varepsilon _{1},\theta _{2},\theta _{3},...,\theta _{n})}{2\varepsilon }

 最后我们还需要对通过反向传播方法计算出的偏导数进行检验。

       根据上面的算法,计算出的偏导数存储在矩阵D_{ij}^{(l)}中。检验时,我们要将该矩阵展开成为向量,同时我们也将 \theta矩阵展开为向量,我们针对每一个\theta都计算一个近似的梯度值,将这些值存储于一个近似梯度矩阵中,最终将得出的这个矩阵同 D_{ij}^{(l)}进行比较。

在这里插入图片描述

9.6 随机初始化

 任何优化算法都需要一些初始的参数。到目前为止我们都是初始所有参数为0,这样的初始方法对于逻辑回归来说是可行的,但是对于神经网络来说是不可行的。如果我们令所有的初始参数都为0,这将意味着我们第二层的所有激活单元都会有相同的值。同理,如果我们初始所有的参数都为一个非0的数,结果也是一样的。

       我们通常初始参数为正负ε之间的随机值,假设我们要随机初始一个尺寸为10×11的参数矩阵,代码如下:

Theta1 = rand(10, 11) * (2*eps) – eps 9.7 综合起来

  小结一下使用神经网络时的步骤:

       网络结构:第一件要做的事是选择网络结构,即决定选择多少层以及决定每层分别有多少个单元。

       第一层的单元数即我们训练集的特征数量。

       最后一层的单元数是我们训练集的结果的类的数量。

       如果隐藏层数大于1,确保每个隐藏层的单元个数相同,通常情况下隐藏层单元的个数越多越好。

       我们真正要决定的是隐藏层的层数和每个中间层的单元数。

       训练神经网络:

       1. 参数的随机初始化

       2. 利用正向传播方法计算所有的h_{\theta }(x)

       3. 编写计算代价函数 J的代码

       4. 利用反向传播方法计算所有偏导数

       5. 利用数值检验方法检验这些偏导数

       6. 使用优化算法来最小化代价函数

参考资料:

吴恩达机器学习课程;肖泽的博客


作者:张某某。paranoia



学习笔记 吴恩达 学习 神经网络 机器学习

需要 登录 后方可回复, 如果你还没有账号请 注册新账号