Opencv获取身份证号码区域的示例代码

Caitin ·
更新时间:2024-11-13
· 742 次阅读

记得应该是16年的时候,从一个公开课看到了关于OCR方面的内容,里面讲到了通过OpenCV对身份证号码区域的剪裁以及使用Tess-Two进行文字识别,实现了对身份证号码的识别功能。

断断续续看了点关于OpenCV的资料,感觉不是这个专业的真难看懂,各种公式各种名词。今天主要用于做个记录,那个一直碎碎念的东西终于完成了!

原理

我理解的原理(除去文字识别):

对图片进行降噪以及二值化,凸显内容区域 对图片进行轮廓检测 对轮廓结果进行分析 剪裁指定区域

代码实现

本文采用VS2017实现,代码如下:

#include "stdafx.h" #include "idocr.h" #include <opencv2/opencv.hpp> #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" using namespace cv; using namespace std; void dealImg(char * path) { Mat src = imread(path); // 结果图 Mat dst; // 显示原图 imshow("原图", src); cvtColor(src, dst, COLOR_RGB2GRAY); // 高斯模糊,主要用于降噪 GaussianBlur(dst, dst, Size(3, 3), 0); imshow("GaussianBlur图", dst); // 二值化图,主要将灰色部分转成白色,使内容为黑色 threshold(dst, dst, 165, 255, THRESH_BINARY); imshow("threshold图", dst); // 中值滤波,同样用于降噪 medianBlur(dst, dst, 3); imshow("medianBlur图", dst); // 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终区域选取 erode(dst, dst, Mat(9, 9, CV_8U)); imshow("erode图", dst); //定义变量 vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(dst, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); Mat result; for (int i = 0; i < hierarchy.size(); i++) { Rect rect = boundingRect(contours.at(i)); rectangle(src, rect, Scalar(255, 0, 255)); // 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上 if (rect.y > src.rows / 2 && rect.width / rect.height > 6) { result = src(rect); imshow("身份证号", result); } } imshow("轮廓图", src); }

详细步骤:

载入原图 将原图转为灰度图 使用高斯模糊进行第一次降噪 将图片二值化 使用中值滤波进行降噪 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终轮廓检测 轮廓检测,获得所有轮廓 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上,并剪裁该区域

结果

对于身份证比较正的图片位置识别的还算是挺正确的,但是如果图片不正,那么第一步就应该对图片进行较正,无奈我是菜鸡。下面是网上搜的一个假身份证图片:

原图

轮廓检测图

剪裁结果图

您可能感兴趣的文章:python opencv实现图片旋转矩形分割python opencv旋转图像(保持图像不被裁减)python opencv实现切变换 不裁减图片python opencv实现旋转矩形框裁减功能opencv python 傅里叶变换的使用opencv python 2D直方图的示例代码OpenCV外接USB摄像头的方法



示例 身份证 身份证号码 opencv

需要 登录 后方可回复, 如果你还没有账号请 注册新账号