深度学习框架(paddlepaddle/pytorch)——卷积核实现边缘检测和均值模糊

Glory ·
更新时间:2024-11-13
· 676 次阅读

飞桨

API信息:https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/dygraph_cn/Conv2D_cn.html

PyTorch

API信息:
https://www.pytorchtutorial.com/docs/package_references/torch-nn/#class-torchnnconv2din95channels-out95channels-kernel95size-stride1-padding0-dilation1-groups1-biastrue

github地址:

https://github.com/Classmate-Huang/nnFramework/tree/master/EasyPaddle/PlayConv

原理

(参考自百度AI Studio)
我们使用Conv2D算子完成一个图像边界检测的任务。图像左边为光亮部分,右边为黑暗部分,需要检测出光亮跟黑暗的分界处。 可以设置宽度方向的卷积核为[1,0,−1][1, 0, -1][1,0,−1],此卷积核会将宽度方向间隔为1的两个像素点的数值相减。当卷积核在图片上滑动的时候,如果它所覆盖的像素点位于亮度相同的区域,则左右间隔为1的两个像素点数值的差为0。只有当卷积核覆盖的像素点有的处于光亮区域,有的处在黑暗区域时,左右间隔为1的两个点像素值的差才不为0。将此卷积核作用到图片上,输出特征图上只有对应黑白分界线的地方像素值才不为0。
在这里插入图片描述
基于这个原理,我们可以对多通道图同时实施边缘检测,将卷积核设置为[[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]。 以及进行均值模糊。

paddlepaddle代码 # paddlepaddle # 利用卷积核实现边缘检测和均值模糊 import matplotlib.pyplot as plt import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D from paddle.fluid.initializer import NumpyArrayInitializer from PIL import Image import numpy as np image = Image.open('picture.jpg') with fluid.dygraph.guard(): # 卷积核参数 [cout, cin, kh, kw] w = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') w = w.reshape([1, 1, 3, 3]) # 由于输入通道数是3,将卷积核的形状从[1,1,3,3]调整为[1,3,3,3] w = np.repeat(w, 3, axis=1) conv1 = Conv2D('conv', num_filters=1, filter_size=[3, 3], param_attr=fluid.ParamAttr( initializer=NumpyArrayInitializer(value=w) )) x = np.array(image).astype('float32') # 图片读入时是【H,W,3】 x = np.transpose(x, (2, 0, 1)) # 将通道维度调整到最前面 【3,H, W】 x = x.reshape(1, 3, image.height, image.width) # [N,C,H,W] x = fluid.dygraph.to_variable(x) y = conv1(x) out1 = y.numpy() w2 = np.ones([3, 3, 5, 5], dtype='float32') conv2 = Conv2D('conv2', num_filters=3, filter_size=[5, 5], param_attr=fluid.ParamAttr( initializer=NumpyArrayInitializer(value=w2) )) y2 = conv2(x) out2 = y2.numpy() out2 = out2 /(25*25) out2 = np.transpose(out2, (0, 2, 3, 1)) print(out2) plt.figure(figsize=(10, 5)) f = plt.subplot(131) plt.imshow(image) f = plt.subplot(132) plt.imshow(out1.squeeze(), cmap='gray') f = plt.subplot(133) plt.imshow(out2.squeeze().astype('uint8')) plt.show() Pytorch代码 # pytorch # 边缘检测和模糊均值 import torch import torch.nn as nn import numpy as np from PIL import Image import matplotlib.pyplot as plt # 读取图片,做相应预处理 image = Image.open('picture.jpg') x = np.array(image) x = np.transpose(x, (2, 0, 1)) x = x[np.newaxis, :] x = torch.Tensor(x) # 输入 [N, channels, H, W] print(x.size()) # Conv [out, in, H, W] conv = nn.Conv2d(3, 1, 3) conv2 = nn.Conv2d(3, 3, 5) print(conv.weight.size()) # 设置初始值 w = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') w = w.reshape(1, 1, 3, 3) w = np.repeat(w, 3, axis=1) w = torch.Tensor(w) # 向量化 conv.weight = nn.Parameter(w) # 赋值 w2 = torch.Tensor(np.ones([3, 3, 5, 5], dtype='float32')) conv2.weight = nn.Parameter(w2) # 计算 y = conv(x) out = y.detach().numpy() y2 = conv2(x) out2 = y2.detach().numpy() out2 = out2 / (25*25) out2 = np.transpose(out2, (0, 2, 3, 1)) print(out2) # 绘图 plt.figure(figsize=(10, 5)) f = plt.subplot(131) plt.imshow(image) f = plt.subplot(132) plt.imshow(out.squeeze(), cmap='gray') f = plt.subplot(133) plt.imshow(out2.squeeze().astype('uint8')) plt.show() 效果:

在这里插入图片描述


作者:我是大黄同学呀



边缘检测 深度学习框架 paddlepaddle pytorch 学习 深度学习 卷积 框架

需要 登录 后方可回复, 如果你还没有账号请 注册新账号