使用RT-Thread 系统实现DIY数字仪表(二)——把TouchGFX移植到RTThread系统

Agnes ·
更新时间:2024-09-21
· 969 次阅读

目录:

1.使用RT-Thread 系统实现DIY数字仪表(一)——STM32CUBMX5.6移植touchGFX4.13
2.使用RT-Thread 系统实现DIY数字仪表(二)——把TouchGFX移植到RTThread系统
3.使用RT-Thread 系统实现DIY数字仪表(三)——RTThread系统实现物联网平台
4.使用RT-Thread 系统实现DIY数字仪表(四)——完善TouchGFX仪表界面
5.使用RT-Thread 系统实现DIY数字仪表(五)——开发微信小程序

实验平台:

硬件: 野火挑战者STM32F767 V1开发版
软件: TouchGFXDesigner v4.13和 STM32CubeMX v5.6.0,MDK v5.29,RT-Thread env 工具

实验前准备工作:

1.准备一套 野火挑战者STM32F767 开发版或其他核心板
2.安装 TouchGFXDesigner v4.13
3.安装STM32CubeMX v5.6.0和X_CUBE_TOUCHGFX软件包
4.安装 MDK v5.27以上版本
5.下载 RTThread源码包https://gitee.com/rtthread/rt-thread

下载:

代码持续更新中:github代码下载地址https://gitee.com/Aladdin-Wang/hellotouchGFX.git

联系作者:

加微信备注touchgfx,拉入touchgfx-rtthread技术交流群共同学习
在这里插入图片描述

移植RT-Thread的BSP模板: 1.学习RT-Thread系统(学过的可以跳过此步骤) 通读RT-Thread系统官方学习文档,https://www.rt-thread.org/document/site/ 快速了解RT-Thread系统的内核,下载安装Env开发工工具 了解设备和驱动的使用方法: 2.移植BSP 参考官方使用 Env 创建 RT-Thread 项目工程的教程 选择 BSP
获取 RT-Thread 源代码后需要根据自己手上的开发板型号找到对应的 BSP,我实验所使用的是野火的STM32F767 V1开发板,所以可以选择别人已经做好的stm32f767-fire-challenger的DSP,在此DSP的基础上移植touchgfx,首先找到如下目录:…\rt-thread-v4.0.2\rt-thread\bsp\stm32\stm32f767-fire-challenger。 搭建项目框架
打开 Env 工具进入 stm32f767-fire-challenger 目录,运行scons --dist 命令。使用此命令会在 stm32f767-fire-challenger 目录下生成 dist 目录,这便是开发项目的目录结构,RT-Thread 源码位于项目文件夹内,仅包含stm32f767-fire-challenger 的 BSP,可以随意拷贝此 BSP 到任何目录下使用。
在这里插入图片描述
进入dist目录下,把工程里面的 stm32f767-fire-challenger压缩包拷贝到你的项目目录下待使用。 制作BSP
也可以自己重新制作对应自己板子的DSP,可以参考官方教程 3.替换工程里CubeMX_Config文件夹

把RT-Thread 系统实现DIY数字仪表(一)工程的以下文件拷贝到BSP模版CubeMX_Config文件夹中,替换掉原先的文件,打开demo1重新生成工程。
在这里插入图片描述

4.更改操作系统的接口文件

拷贝OSWrappers.cpp,重命名为OSWrappers_RTT.cpp文件
在这里插入图片描述
更改代码

/** ****************************************************************************** * File Name : OSWrappers.cpp ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ #include #include #include #include #include #include #include static rt_sem_t frame_buffer_sem; static rt_mq_t vsync_q = 0; using namespace touchgfx; // Just a dummy value to insert in the VSYNC queue. static uint8_t dummy = 0x5a; /* * Initialize frame buffer semaphore and queue/mutex for VSYNC signal. */ void OSWrappers::initialize() { frame_buffer_sem = rt_sem_create("gfx_sem", 1, RT_IPC_FLAG_PRIO); // Create a queue of length 1 vsync_q = rt_mq_create("gfx_mq", 1, 1, RT_IPC_FLAG_PRIO); } /* * Take the frame buffer semaphore. Blocks until semaphore is available. */ void OSWrappers::takeFrameBufferSemaphore() { rt_sem_take(frame_buffer_sem, RT_WAITING_FOREVER); } /* * Release the frame buffer semaphore. */ void OSWrappers::giveFrameBufferSemaphore() { rt_sem_release(frame_buffer_sem); } /* * Attempt to obtain the frame buffer semaphore. If semaphore is not available, do * nothing. * * Note must return immediately! This function does not care who has the taken the semaphore, * it only serves to make sure that the semaphore is taken by someone. */ void OSWrappers::tryTakeFrameBufferSemaphore() { rt_sem_trytake(frame_buffer_sem); } /* * Release the frame buffer semaphore in a way that is safe in interrupt context. Called * from ISR. * * Release the frame buffer semaphore in a way that is safe in interrupt context. * Called from ISR. */ void OSWrappers::giveFrameBufferSemaphoreFromISR() { // Since this is called from an interrupt, FreeRTOS requires special handling to trigger a // re-scheduling. May be applicable for other OSes as well. rt_sem_release(frame_buffer_sem); } /* * Signal that a VSYNC has occurred. Should make the vsync queue/mutex available. * * Note This function is called from an ISR, and should (depending on OS) trigger a * scheduling. */ void OSWrappers::signalVSync() { if (vsync_q) { rt_mq_send(vsync_q, &dummy, 1); } } /* * This function blocks until a VSYNC occurs. * * Note This function must first clear the mutex/queue and then wait for the next one to * occur. */ void OSWrappers::waitForVSync() { // First make sure the queue is empty, by trying to remove an element with 0 timeout. rt_mq_recv(vsync_q, &dummy, 1, 0); // Then, wait for next VSYNC to occur. rt_mq_recv(vsync_q, &dummy, 1, RT_WAITING_FOREVER); } /* * A function that causes executing task to sleep for a number of milliseconds. * * A function that causes executing task to sleep for a number of milliseconds. * This function is OPTIONAL. It is only used by the TouchGFX in the case of * a specific frame refresh strategy (REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL). * Due to backwards compatibility, in order for this function to be useable by the HAL * the function must be explicitly registered: * hal.registerTaskDelayFunction(&OSWrappers::taskDelay) * * see HAL::setFrameRefreshStrategy(FrameRefreshStrategy s) * see HAL::registerTaskDelayFunction(void (*delayF)(uint16_t)) */ void OSWrappers::taskDelay(uint16_t ms) { rt_thread_mdelay(ms); } static rt_base_t IdleTaskHook(void* p) { if ((int)p) //idle task sched out { touchgfx::HAL::getInstance()->setMCUActive(true); } else //idle task sched in { touchgfx::HAL::getInstance()->setMCUActive(false); } return RT_TRUE; } // FreeRTOS specific handlers extern "C" { void vApplicationStackOverflowHook(rt_thread_t xTask, signed char* pcTaskName) { while (1); } void vApplicationMallocFailedHook(rt_thread_t xTask, signed char* pcTaskName) { while (1); } void vApplicationIdleHook(void) { // Set task tag in order to have the "IdleTaskHook" function called when the idle task is // switched in/out. Used solely for measuring MCU load, and can be removed if MCU load // readout is not needed. //vTaskSetApplicationTaskTag(NULL, IdleTaskHook); } } /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
5.新建touchgfx的应用例程文件

在这里插入图片描述
添加代码如下:

#include #include #include #include "app_touchgfx.h" CRC_HandleTypeDef hcrc; DMA2D_HandleTypeDef hdma2d; LTDC_HandleTypeDef hltdc; static void MX_CRC_Init(void); static void MX_DMA2D_Init(void); static void MX_LTDC_Init(void); #define DISP_Pin GET_PIN(D, 4) #define CTDL_BL_Pin GET_PIN(D, 7) #define WIFI_Pin GET_PIN(G, 9) /** * @brief This function handles LTDC global interrupt. */ void LTDC_IRQHandler(void) { /* USER CODE BEGIN LTDC_IRQn 0 */ /* USER CODE END LTDC_IRQn 0 */ HAL_LTDC_IRQHandler(&hltdc); /* USER CODE BEGIN LTDC_IRQn 1 */ /* USER CODE END LTDC_IRQn 1 */ } /** * @brief This function handles DMA2D global interrupt. */ void DMA2D_IRQHandler(void) { /* USER CODE BEGIN DMA2D_IRQn 0 */ /* USER CODE END DMA2D_IRQn 0 */ HAL_DMA2D_IRQHandler(&hdma2d); /* USER CODE BEGIN DMA2D_IRQn 1 */ /* USER CODE END DMA2D_IRQn 1 */ } /** * @brief CRC Initialization Function * @param None * @retval None */ static void MX_CRC_Init(void) { /* USER CODE BEGIN CRC_Init 0 */ /* USER CODE END CRC_Init 0 */ /* USER CODE BEGIN CRC_Init 1 */ /* USER CODE END CRC_Init 1 */ hcrc.Instance = CRC; hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE; hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE; hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE; hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE; hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES; if (HAL_CRC_Init(&hcrc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CRC_Init 2 */ /* USER CODE END CRC_Init 2 */ } /** * @brief DMA2D Initialization Function * @param None * @retval None */ static void MX_DMA2D_Init(void) { /* USER CODE BEGIN DMA2D_Init 0 */ /* USER CODE END DMA2D_Init 0 */ /* USER CODE BEGIN DMA2D_Init 1 */ /* USER CODE END DMA2D_Init 1 */ hdma2d.Instance = DMA2D; hdma2d.Init.Mode = DMA2D_M2M; hdma2d.Init.ColorMode = DMA2D_OUTPUT_RGB565; hdma2d.Init.OutputOffset = 0; hdma2d.LayerCfg[1].InputOffset = 0; hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB565; hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA; hdma2d.LayerCfg[1].InputAlpha = 0; hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA; hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR; if (HAL_DMA2D_Init(&hdma2d) != HAL_OK) { Error_Handler(); } if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DMA2D_Init 2 */ /* USER CODE END DMA2D_Init 2 */ } /** * @brief LTDC Initialization Function * @param None * @retval None */ static void MX_LTDC_Init(void) { /* USER CODE BEGIN LTDC_Init 0 */ /* USER CODE END LTDC_Init 0 */ LTDC_LayerCfgTypeDef pLayerCfg = {0}; /* USER CODE BEGIN LTDC_Init 1 */ /* USER CODE END LTDC_Init 1 */ hltdc.Instance = LTDC; hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL; hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL; hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL; hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC; hltdc.Init.HorizontalSync = 0; hltdc.Init.VerticalSync = 0; hltdc.Init.AccumulatedHBP = 46; hltdc.Init.AccumulatedVBP = 23; hltdc.Init.AccumulatedActiveW = 846; hltdc.Init.AccumulatedActiveH = 503; hltdc.Init.TotalWidth = 866; hltdc.Init.TotalHeigh = 525; hltdc.Init.Backcolor.Blue = 0; hltdc.Init.Backcolor.Green = 0; hltdc.Init.Backcolor.Red = 0; if (HAL_LTDC_Init(&hltdc) != HAL_OK) { Error_Handler(); } pLayerCfg.WindowX0 = 0; pLayerCfg.WindowX1 = 800; pLayerCfg.WindowY0 = 0; pLayerCfg.WindowY1 = 480; pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565; pLayerCfg.Alpha = 255; pLayerCfg.Alpha0 = 0; pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA; pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA; pLayerCfg.FBStartAdress = 0; pLayerCfg.ImageWidth = 800; pLayerCfg.ImageHeight = 480; pLayerCfg.Backcolor.Blue = 0; pLayerCfg.Backcolor.Green = 0; pLayerCfg.Backcolor.Red = 0; if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN LTDC_Init 2 */ rt_pin_mode(DISP_Pin, PIN_MODE_OUTPUT); rt_pin_mode(CTDL_BL_Pin, PIN_MODE_OUTPUT); rt_pin_mode(WIFI_Pin, PIN_MODE_OUTPUT); rt_pin_write(DISP_Pin, 1); rt_pin_write(CTDL_BL_Pin, 1); rt_pin_write(WIFI_Pin, 0); /* USER CODE END LTDC_Init 2 */ } void touchgfx_thread_entry(void *parameter) { MX_CRC_Init(); MX_DMA2D_Init(); MX_LTDC_Init(); MX_TouchGFX_Init(); MX_TouchGFX_Process(); for(;;) { rt_thread_mdelay(100); } } int TouchGFXTask(void) { rt_thread_t tid = NULL; tid = rt_thread_create("TouchGFX", touchgfx_thread_entry, RT_NULL, 4096, 20, 20); if (tid != RT_NULL) rt_thread_startup(tid); else return -1; return RT_EOK; } INIT_APP_EXPORT(TouchGFXTask); 6.移植触摸驱动及qspi flash地址映射驱动文件

从上一个工程拷贝或新建以下文件到ports文件夹
在这里插入图片描述
qspi驱动代码如下:

/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-11-27 zylx first version */ #include #include #include #include #include #ifdef BSP_USING_QSPI_MemoryMapped #include "qspi_memorymapped.h" static QSPI_HandleTypeDef hqspi; //HAL库中发送指令的函数为HAL_QSPI_Command,为了方便使用,对该函数进行如下封装 static void QSPI_SendCmd(uint32_t cmd,uint32_t cmdMode,uint32_t addr,uint32_t addrMode,uint32_t addrSize,uint32_t dataMode) { QSPI_CommandTypeDef s_command = {0}; s_command.Instruction = cmd; //指令 s_command.InstructionMode = cmdMode; //指令模式 s_command.Address = addr; //地址 s_command.AddressMode = addrMode; //地址模式 s_command.AddressSize = addrSize; //地址长度 s_command.DataMode = dataMode; //数据模式 if (HAL_QSPI_Command(&hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { Error_Handler(); } } //QSPI发送与接收的HAL库函数为QSPI_Transmit与HAL_QSPI_Receive,为方便使用,对着两个函数进行如下封装 static void QSPI_Receive(uint8_t* buf,uint32_t len) { hqspi.Instance->DLR = len - 1; //配置数据长度 if(HAL_QSPI_Receive(&hqspi, buf, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { Error_Handler(); } } static uint8_t QSPI_Transmit(uint8_t* buf,uint32_t len) { hqspi.Instance->DLR = len - 1; //配置数据长度 if(HAL_QSPI_Transmit(&hqspi, buf, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { Error_Handler(); } return 0; } //在初始化流程中需要设置QE为1,编写如下函数 static void W25QXX_SetQE(void) { uint8_t value = 0x02; /* 1.写使能 */ QSPI_SendCmd(W25X_WriteEnable,QSPI_INSTRUCTION_1_LINE,0,0,0,0); /* 2.发送写状态寄存器2命令 */ QSPI_SendCmd(W25X_WriteStatusReg2,QSPI_INSTRUCTION_1_LINE,0,0,0,QSPI_DATA_1_LINE); /* 3.发送数据 */ QSPI_Transmit(&value, 1); } //在初始化流程中需要设置读参数,编写如下函数,该函数设置Bit4与Bit5为1,使得读取时最大速率可达104MHz static void W25QXX_SetReadParam(void) { uint8_t para = 3 << 4; /* 1.发送命令 */ QSPI_SendCmd(W25X_SetReadParam,QSPI_INSTRUCTION_4_LINES,0,0,0,QSPI_DATA_4_LINES); /* 2.发送数据 */ QSPI_Transmit(&para, 1); } //最后添加一个读取ID的函数,通过该函数可检测是否初始化成功。根据手册可知,W25Q256的ID为0xEF18 static uint16_t W25QXX_ReadId(void) { uint8_t pData[2]; QSPI_SendCmd(W25X_ManufactDeviceID,QSPI_INSTRUCTION_4_LINES, 0,QSPI_ADDRESS_4_LINES,QSPI_ADDRESS_24_BITS,QSPI_DATA_4_LINES); QSPI_Receive(pData,2); return pData[1] | ( pData[0] << 8 ); } //编写好初始化W25Q256程序后,调用一个进入内存映射模式的函数,该函数如下: /** * @brief Configure the QSPI in memory-mapped mode * @param None * @retval QSPI memory status */ static void W25QXX_MemoryMappedMode(uint32_t ADDRESS_BITS) { QSPI_CommandTypeDef s_command; QSPI_MemoryMappedTypeDef s_mem_mapped_cfg; /* Configure the command for the read instruction */ s_command.InstructionMode = QSPI_INSTRUCTION_4_LINES; s_command.Instruction = W25X_FastReadData; s_command.AddressMode = QSPI_ADDRESS_4_LINES; s_command.AddressSize = ADDRESS_BITS; s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE; s_command.DataMode = QSPI_DATA_4_LINES; s_command.DummyCycles = 8; s_command.DdrMode = QSPI_DDR_MODE_DISABLE; s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY; s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD; /* Configure the memory mapped mode */ s_mem_mapped_cfg.TimeOutActivation = QSPI_TIMEOUT_COUNTER_DISABLE; s_mem_mapped_cfg.TimeOutPeriod = 0; //1; if (HAL_QSPI_MemoryMapped(&hqspi, &s_command, &s_mem_mapped_cfg) != HAL_OK) { Error_Handler(); } } /** * @brief QUADSPI Initialization Function * @param None * @retval None */ static void MX_QUADSPI_Init(void) { /* QUADSPI parameter configuration*/ hqspi.Instance = QUADSPI; hqspi.Init.ClockPrescaler = 2; hqspi.Init.FifoThreshold = 4; hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE; hqspi.Init.FlashSize = 23; hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE; hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0; hqspi.Init.FlashID = QSPI_FLASH_ID_1; hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE; if (HAL_QSPI_Init(&hqspi) != HAL_OK) { Error_Handler(); } } //根据流程编写如下初始化流程函数。 //0XEF13,表示芯片型号为W25Q80 //0XEF14,表示芯片型号为W25Q16 //0XEF15,表示芯片型号为W25Q32 //0XEF16,表示芯片型号为W25Q64 //0XEF17,表示芯片型号为W25Q128 //0XEF18,表示芯片型号为W25Q256 int W25QXX_Init(void) { uint16_t W25QXX_ID; MX_QUADSPI_Init(); W25QXX_SetQE(); rt_thread_mdelay(30); W25QXX_ENTER_QSPI(); W25QXX_SetReadParam();//设置读参数 W25QXX_ID = W25QXX_ReadId(); if(W25QXX_ID != 0XEF18) W25QXX_MemoryMappedMode(QSPI_ADDRESS_24_BITS);//进入内存映射模式 else W25QXX_MemoryMappedMode(QSPI_ADDRESS_32_BITS);//进入内存映射模式 rt_kprintf("W25QXX enter MemoryMappedMode success! W25QXX_ID=%x\r\n",W25QXX_ID); return RT_EOK; } INIT_DEVICE_EXPORT(W25QXX_Init); #endif/* BSP_USING_QSPI_FLASH */

触摸驱动gt9xx.c需要更改中断,使用rtthread的pin设备接口
在这里插入图片描述

7.编辑 board/KConfig

在这里插入图片描述
在这里插入图片描述

8.编辑 board/SConscript

在这里插入图片描述
在这里插入图片描述

9.新建 board/CubeMX_Config/SConscript import os import rtconfig from building import * cwd = GetCurrentDir() # add general drivers src = Split(''' Src/sample_touchgfx.c Src/OSWrappers_RTT.cpp Src/STM32DMA.cpp Src/STM32TouchController.cpp Src/TouchGFXGPIO.cpp Src/TouchGFXConfiguration.cpp Src/TouchGFXGeneratedHAL.cpp Src/TouchGFXHAL.cpp Src/app_touchgfx.c ''') path = [cwd + '/Src'] path += [cwd + '/Middlewares/ST/touchgfx/framework/include'] if rtconfig.CROSS_TOOL == 'gcc': src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/gcc/libtouchgfx.a'] elif rtconfig.CROSS_TOOL == 'keil': src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/Keil/touchgfx_core.lib'] elif rtconfig.CROSS_TOOL == 'iar': src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/IAR8.x/touchgfx_core.a'] group = DefineGroup('TouchGFX_app', src, depend = [''], CPPPATH = path) # add TouchGFX generated genSrc = Glob('./Src/generated/fonts/src/*.cpp') genSrc += Glob('./Src/generated/gui_generated/src/*/*.cpp') genSrc += Glob('./Src/generated/images/src/*.cpp') genSrc += Glob('./Src/generated/texts/src/*.cpp') genPath = [cwd + '/Src/generated/fonts/include'] genPath += [cwd + '/Src/generated/gui_generated/include'] genPath += [cwd + '/Src/generated/images/include'] genPath += [cwd + '/Src/generated/texts/include'] group = group + DefineGroup('TouchGFX_generated', genSrc, depend = [''], CPPPATH = genPath) # add TouchGFX resource resSrc = Glob('./Src/generated/images/src/*/*.cpp') group = group + DefineGroup('TouchGFX_resource', resSrc, depend = ['']) # add TouchGFX gui guiSrc = Glob('./Src/gui/src/*/*.cpp') guiPath = [cwd + '/Src/gui/include'] group = group + DefineGroup('TouchGFX_gui', guiSrc, depend = [''], CPPPATH = guiPath) Return('group') 10.编辑libraries/STM32F7xx_HAL/SConscript

在这里插入图片描述

11.修改工程模版

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.配置 Menuconfig

在这里插入图片描述
在这里插入图片描述

13.生成工程

使用scons --target=mdk5 命令生成 MDK工程
在这里插入图片描述

14.更改sdram_port.h

SDRAM的前2M空间用于touchgfx,后边的空间给rtthread系统分配内存使用。
在这里插入图片描述

15.编译并下载运行

此工程地址
hellotouchGFX/ 3_STM32F767_RTThread_TouchGFX / 3_rtthread_TouchGFX_transplant / stm32f767-fire-challenger
在这里插入图片描述
在这里插入图片描述

16.还需改进的地方 16.1 rtthread的触摸驱动软件包待移植

使用的触摸的驱动还是上一版工程的代码,没有使用rtthread原汁原味的触摸驱动软件包

16.2 qspi flash 地址映射驱动待整合

qspi flash 地址映射的驱动使用的依然是上一版的代码,没有使用rtthread的源码包里提供的qspi驱动,这个也可以整合进去

16.3 待制作成RTThread的TouchGFX软件包

TouchGFX本身就是一个与硬件和操作系统无关的软件包,完全可以整合成RTThread的一个软件包来使用,此次移植的依然是通过cubmx生成的TouchGFX工程,没有制作成RTThread的通用软件包

参考文章:https://blog.csdn.net/baidu_33429980/article/details/104248352


作者:Aladdin Wang



rt-thread 系统

需要 登录 后方可回复, 如果你还没有账号请 注册新账号