浅谈numpy中函数resize与reshape,ravel与flatten的区别

Judy ·
更新时间:2024-11-14
· 804 次阅读

这两组函数中区别很是类似,都是一个不改变之前的数组,一个改变数组本身

resize和reshape

>>> import numpy as np >>> a = np.arange(20).reshape(4,5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) >>> a.reshape(2,10) array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) >>> a.resize(2,10) >>> a array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])

两个函数都是改变数组的形状,但是resize是在本身上进行操作,reshape返回的是修改之后的参数

ravel和flatten

两者都可以将数组转换为一个维,

flatten(order='C')

参数:{‘C',‘F',‘A',‘K'}

默认情况下‘C'以行为主的顺序展开,‘F'(Fortran风格)意味着以列的顺序展开,‘A'表示如果a在内存中为Fortran连续,则按列展开,否则以行展开,‘K'按照元素在内存中出现的顺序展平a。

>>> a = np.arange(6).reshape(2,3) >>> a.flatten() array([0, 1, 2, 3, 4, 5]) >>> a.ravel() array([0, 1, 2, 3, 4, 5]) >>> a.flatten('F') array([0, 3, 1, 4, 2, 5]) >>> a.ravel('F') array([0, 3, 1, 4, 2, 5]) >>> >>> x = np.array([[1,2],[3,4]]) >>> a = np.arange(6).reshape(2,3) >>> a.flatten()[...] = 1 >>> a array([[0, 1, 2], [3, 4, 5]]) >>> a.ravel()[...] = 1 >>> a array([[1, 1, 1], [1, 1, 1]]) >>>

flatten不会影响原始矩阵,返回的是一个副本,但是ravel是会修改数组

补充知识:【Numpy】维度变化reshape、ravel、flatten、transpose、resize、swapaxes

0. 首先,创建一个多维数组

from numpy import *
a = arange(24)

得到:

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]

1.reshape 函数

b = a.reshape(2,3,4)
print(b)

得到一个 2*3*4 维的数组:

[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]

可以想象成2层小洋楼,每层有 3*4 个房间

2.ravel函数 可以将多维数组展平(也就是变回一维)

c = b.ravel()
print(c)

得到一维数组

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]

3.flatten函数 也是将多维数组展平,与ravel函数的功能相同,不过flatten函数会请求分配内存来保存结果,而ravel函数只是返回数组的一个视图(view)

c = b.flatten()
print(c)

得到一维数组

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]

4.用元组设置维度

直接用一个正整数元组来设置数组的维度

b.shape = (6,4)
print(b)

这种做法将直接改变所操作的数组,现在数组b变成了一个 6*4 的多维数组

[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] [16 17 18 19] [20 21 22 23]]

5.transpose函数 将矩阵进行转置

d = b.transpose()
print(d)

得到 4*6 的多维数组

[[ 0 4 8 12 16 20] [ 1 5 9 13 17 21] [ 2 6 10 14 18 22] [ 3 7 11 15 19 23]]

6.transpose函数 将矩阵按照设定维度变换顺序

b = a.reshape(2,3,4) c = b.transpose((2,1,0)) print(c)

得到一个形状为4*3*2的数组:

array([[[ 0, 12], [ 4, 16], [ 8, 20]], [[ 1, 13], [ 5, 17], [ 9, 21]], [[ 2, 14], [ 6, 18], [10, 22]], [[ 3, 15], [ 7, 19], [11, 23]]])

7.resize函数和reshape函数的功能一样,但resize会直接修改所操作的数组

b.resize((2,12))
print(b)

得到 2*12 的两维数组

[[ 0 1 2 3 4 5 6 7 8 9 10 11]
[12 13 14 15 16 17 18 19 20 21 22 23]]

并且这一步不可以通过赋值来实现,如下所示:

e = b.resize((2,12))
print(e)

此时结果为:

None

8.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组

b = a.reshape(2,3,4) c = b.swapaxes(0,2) print(c)

得到一个形状为4*3*2的数组(可以和6.transpose函数进行比较来看):

array([[[ 0, 12], [ 4, 16], [ 8, 20]], [[ 1, 13], [ 5, 17], [ 9, 21]], [[ 2, 14], [ 6, 18], [10, 22]], [[ 3, 15], [ 7, 19], [11, 23]]])

以上这篇浅谈numpy中函数resize与reshape,ravel与flatten的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

您可能感兴趣的文章:Numpy之reshape()使用详解Python中优化NumPy包使用性能的教程Python numpy 常用函数总结numpy.array 操作使用简单总结



ravel NumPy resize reshape

需要 登录 后方可回复, 如果你还没有账号请 注册新账号