numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)

Doris ·
更新时间:2024-11-14
· 931 次阅读

numpy库对多维数组有非常灵巧的处理方式,主要的处理方法有:

.reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变

.resize(shape) : 与.reshape()功能一致,但修改原数组

In [22]: a = np.arange(20) #原数组不变 In [23]: a.reshape([4,5]) Out[23]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) In [24]: a Out[24]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) #修改原数组 In [25]: a.resize([4,5]) In [26]: a Out[26]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])

.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组

In [27]: a.swapaxes(1,0) Out[27]: array([[ 0, 5, 10, 15], [ 1, 6, 11, 16], [ 2, 7, 12, 17], [ 3, 8, 13, 18], [ 4, 9, 14, 19]])

.flatten() : 对数组进行降维,返回折叠后的一维数组,原数组不变

In [29]: a.flatten() Out[29]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

到此这篇关于numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)的文章就介绍到这了,更多相关numpy ndarray多维数组维度变换内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!

您可能感兴趣的文章:Numpy对数组的操作:创建、变形(升降维等)、计算、取值、复制、分割、合并



NumPy resize 维数 方法 reshape 维度 数组

需要 登录 后方可回复, 如果你还没有账号请 注册新账号