图片人脸检测
#coding=utf-8
import cv2
import dlib
path = "img/meinv.png"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#人脸分类器
detector = dlib.get_frontal_face_detector()
# 获取人脸检测器
predictor = dlib.shape_predictor(
"C:\\Python36\\Lib\\site-packages\\dlib-data\\shape_predictor_68_face_landmarks.dat"
)
dets = detector(gray, 1)
for face in dets:
shape = predictor(img, face) # 寻找人脸的68个标定点
# 遍历所有点,打印出其坐标,并圈出来
for pt in shape.parts():
pt_pos = (pt.x, pt.y)
cv2.circle(img, pt_pos, 2, (0, 255, 0), 1)
cv2.imshow("image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
视频人脸检测
# coding=utf-8
import cv2
import dlib
detector = dlib.get_frontal_face_detector() #使用默认的人类识别器模型
def discern(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dets = detector(gray, 1)
for face in dets:
left = face.left()
top = face.top()
right = face.right()
bottom = face.bottom()
cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 2)
cv2.imshow("image", img)
cap = cv2.VideoCapture(0)
while (1):
ret, img = cap.read()
discern(img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
那么,OpenCV和Dlib的视频识别对比,有两个地方是不同的:
1.Dlib模型识别的准确率和效果要好于OpenCV;
2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;
以上就是python实现图片,视频人脸识别(dlib版)的详细内容,更多关于python 人脸识别的资料请关注软件开发网其它相关文章!
您可能感兴趣的文章:python 检测图片是否有马赛克python 实现图片修复(可用于去水印)python实现图片,视频人脸识别(opencv版)python切割图片的示例python图片合成的示例Python 实现图片转字符画的示例(静态图片,gif皆可)python 实现批量图片识别并翻译Python操作word文档插入图片和表格的实例演示Python提取视频中图片的示例(按帧、按秒)python 调整图片亮度的示例