用PCA、LDA、LR做人脸识别代码实现

Tyne ·
更新时间:2024-11-13
· 710 次阅读

'''机器学习-面部识别示例''' from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.preprocessing import StandardScaler from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score from sklearn.metrics import classification_report, confusion_matrix,accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression # 第一步:The Data 准备数据 lfw_people = fetch_lfw_people(min_faces_per_person=9, resize=0.4) n_samples, h, w = lfw_people.images.shape n_samples, h, w X = lfw_people.data y = lfw_people.target n_features = X.shape[1] '''分类准确率baseline 0.45 ''' # 第二步:Some data exploration 数据探索 target_names = lfw_people.target_names n_classes = target_names.shape[0] print ("Total dataset size:") print ("n_samples: %d" % n_samples) print ("n_features: %d" % n_features) print ("n_classes: %d" % n_classes ) #第三步:特征学习,创建面部识别模型的机器学习pipeline X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.25, random_state=1) # instantiate the PCA module pca = PCA(n_components=30, whiten=True) preprocessing = Pipeline([('scale', StandardScaler()), ('pca', pca)]) preprocessing.fit(X_train) extracted_pca = preprocessing.steps[1][1] # Scree Plot陡坡图 plt.plot(np.cumsum(extracted_pca.explained_variance_ratio_)) #第四步,创建网格搜索,寻找最优模型和参数 #创建函数打印最优准确率、最优参数、训练和预测时间 def get_best_model_and_accuracy(model, params, X, y): grid = GridSearchCV(model, params, error_score=0.) grid.fit(X, y) print ("Best Accuracy: {}".format(grid.best_score_)) print ("Best Parameters: {}".format(grid.best_params_)) print( "Average Time to Fit (s):{}".format(round(grid.cv_results_['mean_fit_time'].mean(), 3))) print ("Average Time to Score (s):{}".format(round(grid.cv_results_['mean_score_time'].mean(), 3))) # Create a larger pipeline to gridsearch face_params = {'logistic__C':[1e-2, 1e-1, 1e0, 1e1, 1e2], 'preprocessing__pca__n_components':[5 ,10, 15, 20, 25,26], 'preprocessing__pca__whiten':[True, False], 'preprocessing__lda__n_components':range(1, 3) } pca = PCA() lda = LinearDiscriminantAnalysis() preprocessing = Pipeline([('scale', StandardScaler()), ('pca', pca),('lda', lda)]) logreg = LogisticRegression() face_pipeline = Pipeline(steps=[('preprocessing', preprocessing),('logistic', logreg)]) get_best_model_and_accuracy(face_pipeline, face_params, X, y) '''output: Best Accuracy: 0.675 Best Parameters: {'logistic__C': 10.0, 'preprocessing__lda__n_components': 2, 'preprocessing__pca__n_components': 20, 'preprocessing__pca__whiten': True} Average Time to Fit (s):0.008 Average Time to Score (s):0.001 '''

#confusion matrix 0.5 Accuracy score for best estimator precision recall f1-score support George HW Bush 0.50 0.50 0.50 2 Michael Schumacher 0.43 1.00 0.60 3 Paul ONeill 1.00 0.20 0.33 5 micro avg 0.50 0.50 0.50 10 macro avg 0.64 0.57 0.48 10 weighted avg 0.73 0.50 0.45 10 None 0.4 seconds to grid search and predict the test set



作者:夜已.入深



lda lr 人脸识别 pca

需要 登录 后方可回复, 如果你还没有账号请 注册新账号