非常简单的函数,但是官网的介绍令人(令我)迷惑,所以稍加解释。
mask_select会将满足mask(掩码、遮罩等等,随便翻译)的指示,将满足条件的点选出来。
根据掩码张量mask中的二元值,取输入张量中的指定项( mask为一个 ByteTensor),将取值返回到一个新的1D张量,
张量 mask须跟input张量有相同数量的元素数目,但形状或维度不需要相同
x = torch.randn(3, 4)
x
1.2045 2.4084 0.4001 1.1372
0.5596 1.5677 0.6219 -0.7954
1.3635 -1.2313 -0.5414 -1.8478
[torch.FloatTensor of size 3x4]
mask = x.ge(0.5)
mask
1 1 0 1
1 1 1 0
1 0 0 0
[torch.ByteTensor of size 3x4]
torch.masked_select(x, mask)
1.2045
2.4084
1.1372
0.5596
1.5677
0.6219
1.3635
[torch.FloatTensor of size 7]
以上这篇Pytorch mask_select 函数的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。
您可能感兴趣的文章:在Python中通过threshold创建mask方式python实现根据给定坐标点生成多边形mask的例子python_mask_array的用法Numpy中的mask的使用浅谈图像处理中掩膜(mask)的意义