工作中有时候需要对vgg进行定制化处理,比如有些时候需要借助于vgg的层结构,但是需要使用的是2 channels输入,等等需求,这时候可以使用vgg的原始结构用class重写一遍,但是这样的方式比较慢,并且容易出错,下面给出一种比较简单的方式
def define_vgg(vgg,input_channels,endlayer,use_maxpool=False):
vgg_ad = copy.deepcopy(vgg)
model = nn.Sequential()
i = 0
for layer in list(vgg_ad.features):
if i > endlayer:
break
if isinstance(layer, nn.Conv2d) and i is 0:
name = "conv_" + str(i)
layer = nn.Conv2d(input_channels,
layer.out_channels,
layer.kernel_size,
stride = layer.stride,
padding=layer.padding)
model.add_module(name, layer)
if isinstance(layer, nn.Conv2d):
name = "conv_" + str(i)
model.add_module(name, layer)
if isinstance(layer, nn.ReLU):
name = "leakyrelu_" + str(i)
layer = nn.LeakyReLU(inplace=True)
model.add_module(name, layer)
if isinstance(layer, nn.MaxPool2d):
name = "pool_" + str(i)
if use_maxpool:
model.add_module(name, layer)
else:
avgpool = nn.AvgPool2d(kernel_size=layer.kernel_size, stride=layer.stride, padding=layer.padding)
model.add_module(name, avgpool)
i += 1
return model
函数输入项中的vgg 是直接使用的import torchvision.models.vgg16 传入的是vgg16 非预训练版本。end_layer 是需要提取的层数,这里使用了vgg.features 是指仅仅在vgg.features 上进行层的提取;也可以根据定制在classifier上进行提取。
下面是我的一个提取前7层的示例,可以使用pyCharm evaluate 上面函数返回的model,可以看到这个示例的情况,这里我的定制条件是输入通道为2 ,需要提取前7层,并且将ReLu更换为LeakyRelu。
Sequential(
(conv_0): Conv2d(2, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(leakyrelu_1): LeakyReLU(negative_slope=0.01, inplace)
(conv_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(leakyrelu_3): LeakyReLU(negative_slope=0.01, inplace)
(pool_4): AvgPool2d(kernel_size=2, stride=2, padding=0)
(conv_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(leakyrelu_6): LeakyReLU(negative_slope=0.01, inplace)
(conv_7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
以上这篇Pytorch 抽取vgg各层并进行定制化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。
您可能感兴趣的文章:pytorch 可视化feature map的示例代码pytorch获取vgg16-feature层输出的例子pytorch在fintune时将sequential中的层输出方法,以vgg为例Pytorch抽取网络层的Feature Map(Vgg)实例