python神经网络学习使用Keras进行简单分类

Grizelda ·
更新时间:2024-11-10
· 160 次阅读

目录

学习前言

Keras中分类的重要函数

1、np_utils.to_categorical

2、Activation

3、metrics=[‘accuracy’]

全部代码

学习前言

上一篇讲了如何构建回归算法,这一次将怎么进行简单分类。

Keras中分类的重要函数 1、np_utils.to_categorical

np_utils.to_categorical用于将标签转化为形如(nb_samples, nb_classes)的二值序列。

假设num_classes = 10。

如将[1,2,3,……4]转化成:

[[0,1,0,0,0,0,0,0]
[0,0,1,0,0,0,0,0]
[0,0,0,1,0,0,0,0]
……
[0,0,0,0,1,0,0,0]]

这样的形态。

如将Y_train转化为二值序列,可以用如下方式:

Y_train = np_utils.to_categorical(Y_train,num_classes= 10) 2、Activation

Activation是激活函数,一般在每一层的输出使用。

当我们使用Sequential模型构建函数的时候,只需要在每一层Dense后面添加Activation就可以了。

Sequential函数也支持直接在参数中完成所有层的构建,使用方法如下。

model = Sequential([ Dense(32,input_dim = 784), Activation("relu"), Dense(10), Activation("softmax") ] )

其中两次Activation分别使用了relu函数和softmax函数。

3、metrics=[‘accuracy’]

在model.compile中添加metrics=[‘accuracy’]表示需要计算分类精确度,具体使用方式如下:

model.compile( loss = 'categorical_crossentropy', optimizer = rmsprop, metrics=['accuracy'] ) 全部代码

这是一个简单的仅含有一个隐含层的神经网络,用于完成手写体识别。在本例中,使用的优化器是RMSprop,具体可以使用的优化器可以参照Keras中文文档。

import numpy as np from keras.models import Sequential from keras.layers import Dense,Activation ## 全连接层 from keras.datasets import mnist from keras.utils import np_utils from keras.optimizers import RMSprop # 获取训练集 (X_train,Y_train),(X_test,Y_test) = mnist.load_data() # 首先进行标准化 X_train = X_train.reshape(X_train.shape[0],-1)/255 X_test = X_test.reshape(X_test.shape[0],-1)/255 # 计算categorical_crossentropy需要对分类结果进行categorical # 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列 Y_train = np_utils.to_categorical(Y_train,num_classes= 10) Y_test = np_utils.to_categorical(Y_test,num_classes= 10) # 构建模型 model = Sequential([ Dense(32,input_dim = 784), Activation("relu"), Dense(10), Activation("softmax") ] ) rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0) ## compile model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy']) print("\ntraining") cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 32) print("\nTest") cost,accuracy = model.evaluate(X_test,Y_test) ## W,b = model.layers[0].get_weights() print("accuracy:",accuracy)

实验结果为:

Epoch 1/2 60000/60000 [==============================] - 12s 202us/step - loss: 0.3512 - acc: 0.9022 Epoch 2/2 60000/60000 [==============================] - 11s 183us/step - loss: 0.2037 - acc: 0.9419 Test 10000/10000 [==============================] - 1s 108us/step accuracy: 0.9464

以上就是python神经网络学习使用Keras进行简单分类的详细内容,更多关于python神经网络Keras分类的资料请关注软件开发网其它相关文章!



学习 分类 python神经网络 keras Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号