标量
向量
长度、维度和形状
矩阵
张量
张量算法的基本性质
降维
点积
矩阵-矩阵乘法
范数
标量标量由普通小写字母表示(例如,x、y和z)。我们用 R \mathbb{R} R表示所有(连续)实数标量的空间。
标量由只有一个元素的张量表示。下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法、乘法、除法和指数。
import torch
x = torch.tensor([3.0])
y = torch.tensor([2.0])
x + y, x * y, x / y, x ** y
tensor([5]), tensor([6]), tensor([1.5]), tensor([9])
向量
向量是标量值组成的列表,我们将这些标量值称为向量的元素或分量。
在数学表示法中,我们通常将向量记为粗体、小写的符号(例如, x \mathbf{x} x、 y \mathbf{y} y和 z \mathbf{z} z)
我们通过一维张量处理向量。一般来说,张量可以具有任意长度,最大长度取决于机器的内存限制。
x = torch.arange(4)
tensor([0, 1, 2, 3])
大量文献认为列向量是向量的默认方向。在数学中,向量 x \mathbf{x} x可以写为:
我们可以通过张量的索引来访问任一元素。
x[3]
tensor(3)
长度、维度和形状
在数学表示法中,如果我们想说一个向量 x \mathbf{x} x由 n n n个实值标量组成,我们可以将其表示为 x ∈ R n \mathbf{x} \in \mathbb{R}^{n} x∈Rn。向量的长度通常称为向量的维度。
与普通的Python数组一样,我们可以通过调用Python的内置len()函数来访问张量的长度。
len(x)
4
当用张量表示一个向量(只有一个轴)时,我们也可以通过.shape属性访问向量的长度。形状(shape)是一个元组,列出了张量沿每个轴的长度(维数)。对于只有一个轴的张量,形状只有一个元素。
x.shape
torch.Size([4])
注意,维度(dimension)这个词在不同上下文时往往会有不同的含义,这经常会使人感到困惑。为了清楚起见,我们在此明确一下。向量或轴的维度被用来表示向量或轴的长度,即向量或轴的元素数量。然而,张量的维度用来表示张量具有的轴数。在这个意义上,张量的某个轴的维数就是这个轴的长度。
矩阵当矩阵具有相同数量的行和列时,其形状将变为正方形;因此,它被称为方矩阵。
当调用函数来实例化张量时,我们可以通过指定两个分量m和n来创建一个形状为 m×n的矩阵。
A = torch.arange(20).reshape(5, 4)
tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
A.T
tensor([[0, 4, 8, 12, 16],
[1, 5, 9, 13, 17],
[2, 6, 10, 14, 18],
[3, 7, 11, 15, 19]])
矩阵是有用的数据结构:它们允许我们组织具有不同变化模式的数据。例如,我们矩阵中的行可能对应于不同的房屋(数据样本),而列可能对应于不同的属性。因此,尽管单个向量的默认方向是列向量,但在表示表格数据集的矩阵中,将每个数据样本作为矩阵中的行向量更为常见。
张量张量为我们提供了描述具有任意数量轴的 n n n维数组的通用方法。
当我们开始处理图像时,张量将变得更加重要,图像以 n n n维数组形式出现,其中3个轴对应于高度、宽度以及一个通道(channel)轴,用于堆叠颜色通道(红色、绿色和蓝色)。现在,我们将跳过高阶张量,集中在基础知识上。
X = torch.arange(24).reshape(2, 3, 4)
tensor([[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
张量算法的基本性质
任何按元素的一元运算都不会改变其操作数的形状。同样,给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量。例如,将两个相同形状的矩阵相加会在这两个矩阵上执行元素的加法。
A = torch.arange(20, dtype=torch.float32).reshape(5,4)
B = A.clone
A, A + B
tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]]),
tensor([[0, 2, 4, 6],
[8, 10, 12, 14],
[16, 18, 20, 22],
[24, 26, 28, 30],
[32, 34, 36, 38]])
具体而言,两个矩阵按元素乘法称为哈达玛积。
A * B
tensor([[0, 1, 4, 9],
[16, 25, 36, 49],
[64, 81, 100, 121],
[144, 169, 196, 225],
[256, 289, 324, 361]])
将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。
降维我们可以对任意张量进行一个有用的操作是计算其元素的和。在代码中,我们可以调用计算求和的函数:
x = torch.arange(4, dtype = torch.float32)
x.sum()
tensor(6)
默认的情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。我们还可以指定张量沿哪一个轴来通过求和降低维度。以矩阵为例,为了通过求和所有行的元素来降维(轴0),我们可以在调用函数时指定axis = 0。由于输入矩阵沿着0轴降维以生成输出张量,因此输入的轴0的维数在输出形状中丢失。
A.shape
torch.Size([5, 4])
A_sum_axis0 = A.sum(axis = 0)
A_sum_axis0, A_sum_axis0.shape
tensor([40, 45, 50, 55]), torch.Size([4])
指定axis = 1将通过汇总所有列的元素降维(轴1)。因此,输入的轴1的维数在输出形状中消失。
A_sum_axis1 = A.sum(axis = 1)
A_sum_axis1, A_sum_axis1.shape
tensor([6, 22, 38, 54, 70]), torch.Size([5])
沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。
A.sum(axis=[0, 1])
tensor(190)
一个与求和相关的量是平均值。在代码中,我们可以调用函数来计算任意形状张量的平均值。
A.mean()
同样,计算平均值的函数也可以沿指定轴降低张量的维度。
A.mean(axis = 0)
点积
最基本的操作是点积。
给定两个向量,点积是它们相同位置的按元素乘积的和。
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)
tensor([0, 1, 2, 3]), tensor([1, 1, 1, 1]), tensor(6)
矩阵-矩阵乘法
在下面的代码中,我们在A和B上执行矩阵乘法。这里的A是一个5行4列的矩阵,B是一个4行3列的矩阵。相乘后,我们得到一个5行3列的矩阵。
B = torch.ones(4, 3)
torch.mm(A, B)
范数
线性代数中最有用的一些运算符是范数。非正式地说,一个向量的范数告诉我们一个向量有多大。这里考虑的大小(size)概念不涉及维度,而是分量的大小。
在线性代数中,向量范数是将向量映射到标量的函数 f f f。向量范数要满足一些属性。给定任意向量 x \mathbf{x} x,第一个性质来说,如果我们按常数因子 α \alpha α缩放向量的所有元素,其范数也会按相同常数因子的绝对值缩放:
第二个性质是我们熟悉的三角不等式:
第三个性质简单地说范数必须是非负的。
最后一个性质要求范数最小为0,当且仅当向量全由0组成。
u = torch.tensor([3, 4])
torch.norm(u)
u = torch.tensor([3, 4])
torch.abs(u).sum()
tensor(7)
torch.norm(torch.ones((4, 9)))
范数和目标:
在深度学习中,我们经常试图解决优化问题:最大化分配给观测数据的概率;最小化预测和真实观测之间的距离。用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,最大化不同项目之间的距离。通常,目标,或许是深度学习算法最终要的组成部分(除了数据),被表达为范数。
以上就是Python深度学习线性代数示例详解的详细内容,更多关于Python线性代数的资料请关注软件开发网其它相关文章!