python面试题:Python 剪绳子的多种思路实现(动态规划和贪心)

Grizelda ·
更新时间:2024-11-13
· 867 次阅读

@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府
这篇文章主要介绍了Python 剪绳子的多种思路实现(动态规划和贪心),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
剑指Offer(Python多种思路实现):剪绳子
面试14题:

题目:剪绳子

题:给你一根长度为n的绳子,请把绳子剪成m段(m,n都是整数,且n>1,m>1),每段绳子的长度记为k[0],k[1],k[2],…,k[m]。请问k[0]k[1]…*k[m]可能的最大乘积是多少?例如,当绳子的长度为8时,我们把它剪成长度分别为2,3,3的三段,此时得到的最大乘积为18。

解题思路一:基于动态规划和贪婪算法。

class Solution: def MaxProductAfterCut(self, n): # 动态规划 if nmax: max=product products[i]=max #print(products) return products[n] def MaxProductAfterCut2(self, n): # 贪婪算法 if n < 2: return 0 if n==2: return 1 if n==3: return 2 timesOf3 = n//3 if n - timesOf3*3 == 1: timesOf3 -= 1 timesOf2 = (n - timesOf3 * 3)//2 return (3**timesOf3) * (2**timesOf2) if __name__=="__main__": print(Solution().MaxProductAfterCut(8)) print(Solution().MaxProductAfterCut(10)) #print(Solution().NumberOf1(0)) print(Solution().MaxProductAfterCut2(8)) print(Solution().MaxProductAfterCut2(10))

解题思路二:基于动态规划和贪婪算法。

class Solution: # 动态规划 def maxCut(self, n): if nmax: max = temp res[i]=max # 由下而上 return res[n] # 贪婪算法 def cutRope(length): if length<2: return 0 if length==2: return 1 if length==3: return 2 timesOf3 = length // 3 # 尽可能剪出3 if length-timesOf3*3 == 1: # 如果最后余1,则留一段4分成两半 timesOf3 -= 1 timesOf2 = (length-timesOf3*3) // 2 return (3**timesOf3) * (2**timesOf2)

非常感谢你的阅读
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深入的研习计算机基础知识,整理好了,我放在我们的微信公众号《程序员学府》,如果你也不甘平庸,那就与我一起在编码之外,不断成长吧!

其实这里不仅有技术,更有那些技术之外的东西,比如,如何做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?[点击加入]
想做你自己想成为高尚人,加油!

程序员牡蛎 原创文章 94获赞 62访问量 10万+ 关注 私信 展开阅读全文
作者:程序员牡蛎



python面试题 剪绳子 动态规划 动态 Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号