Python可视化学习之seaborn绘制线型回归曲线

Trina ·
更新时间:2024-11-13
· 1191 次阅读

目录

本文速览

1、绘图数据准备

2、seaborn.regplot

regplot默认参数线型回归图

分别设置点和拟合线属性

置信区间(confidence interval)设置

拟合线延伸与坐标轴相交 

拟合离散变量曲线

多项式回归( polynomial regression)拟合曲线

3、seaborn.lmplot

按变量分类拟合回归线

散点marker设置

散点调色盘

拟合线属性设置

绘制分面图 

本文速览

1、绘图数据准备

依旧使用鸢尾花iris数据集,详细介绍见之前文章。

#导入本帖要用到的库,声明如下: import matplotlib.pyplot as plt import numpy as np import pandas as pd import palettable from pandas import Series,DataFrame from sklearn import datasets import seaborn as sns import palettable #导入鸢尾花iris数据集(方法一) #该方法更有助于理解数据集 iris=datasets.load_iris() x, y =iris.data,iris.target y_1 = np.array(['setosa' if i==0 else 'versicolor' if i==1 else 'virginica' for i in y]) pd_iris = pd.DataFrame(np.hstack((x, y_1.reshape(150,1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class']) #astype修改pd_iris中数据类型object为float64 pd_iris['sepal length(cm)']=pd_iris['sepal length(cm)'].astype('float64') pd_iris['sepal width(cm)']=pd_iris['sepal width(cm)'].astype('float64') pd_iris['petal length(cm)']=pd_iris['petal length(cm)'].astype('float64') pd_iris['petal width(cm)']=pd_iris['petal width(cm)'].astype('float64') #导入鸢尾花iris数据集(方法二) #该方法有时候会卡巴斯基,所以弃而不用 #import seaborn as sns #iris_sns = sns.load_dataset("iris")

数据集简单查看

2、seaborn.regplot

seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, seed=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=True, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o', scatter_kws=None, line_kws=None, ax=None)

regplot默认参数线型回归图 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2)#设置主题,文本大小 g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, color='#000000',#设置marker及线的颜色 marker='*',#设置marker形状 )

分别设置点和拟合线属性 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, color='#000000', marker='*', scatter_kws={'s': 60,'color':'g',},#设置散点属性,参考plt.scatter line_kws={'linestyle':'--','color':'r'}#设置线属性,参考 plt.plot

置信区间(confidence interval)设置

注意拟合线周围阴影面积变化 

plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, color='#000000', marker='*', ci=60,#置信区间设置,默认为95%置信区间,越大线周围阴影部分面积越大 )

拟合线延伸与坐标轴相交  # extend the regression line to the axis limits plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, color='#000000', marker='*', truncate=False,#让拟合线与轴相交 )

拟合离散变量曲线 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) x_discrete=[0 if i=='setosa' else 1 if i=='versicolor' else 2 for i in pd_iris['class']]# g=sns.regplot(x=x_discrete, y='sepal width(cm)', data=pd_iris,#x此时为离散变量 color='#000000', marker='*', )

多项式回归( polynomial regression)拟合曲线 plt.figure(dpi=110) sns.set(style="whitegrid",font_scale=1.2) g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, marker='*', order=4,#默认为1,越大越弯曲 scatter_kws={'s': 60,'color':'#016392',},#设置散点属性,参考plt.scatter line_kws={'linestyle':'--','color':'#c72e29'}#设置线属性,参考 plt.plot )

3、seaborn.lmplot

seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, height=5, aspect=1, markers='o', sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, seed=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=True, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None, size=None)

seaborn.lmplot结合seaborn.regplot()和FacetGrid,比seaborn.regplot()更灵活,可绘制更个性化的图形。

按变量分类拟合回归线 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, hue='class', ) g.fig.set_size_inches(10,8)

散点marker设置 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, hue='class', markers=['+','^','o'], #设置散点marker ) g.fig.set_size_inches(10,8)

散点调色盘 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, hue='class', markers=['+','^','*'], scatter_kws={'s':180}, palette=["#01a2d9", "#31A354", "#c72e29"],#调色盘 ) g.fig.set_size_inches(10,8)

拟合线属性设置 plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, hue='class', markers=['+','^','*'], scatter_kws={'s':180}, line_kws={'linestyle':'--'},#拟合线属性设置 palette=["#01a2d9", "#31A354", "#c72e29"], ) g.fig.set_size_inches(10,8)

绘制分面图  plt.figure(dpi=100) sns.set(style="whitegrid",font_scale=1.2) g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris, col='class',#按class绘制分面图 markers='*', scatter_kws={'s':150,'color':'#01a2d9'}, line_kws={'linestyle':'--','color':'#c72e29'},#直线属性设置 ) g.fig.set_size_inches(10,8)

以上就是Python可视化学习之seaborn绘制线型回归曲线的详细内容,更多关于Python seaborn线型回归曲线的资料请关注软件开发网其它相关文章!



python可视化 化学 Seaborn 学习 回归 Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号